Universal Wellpad Control based on Open-Architecture Design

Robert George – XTO Energy
Dr. Tao Cheng, Dr. Bin Xu, Roy Livingston – ExxonMobil
Dr. Sanghak Lee – KETI
Seongwoo Lee – Naonworks Inc.
Outline

- Motivation
- Open-Architecture Solution
 - Use case – Plunger Lift Automation
 - Field Test
 - Live Demo
- Conclusion and Next Steps
Motivation

- Recurring Challenge due to Obsolescence in Process Control
 - Software:
 - Proprietary automation software built in metering system hardware
 - Available software and application space are vendor specific
 - Hardware:
 - Proprietary communication between flow measurement device and RTU
 - Devices and components are vendor specific
 - Operator are forced to
 - Adapt unplanned change due to system obsolescence
 - Migrate to another proprietary system which may go obsolete in few years
Open-Architecture Solution

- Decouple SW and HW
 - Data exchange on open protocols
 - User defined or 3rd party automation
 - Data analytics and optimization apps

- Standard Communication Protocols
 - Open protocols to instrument
 - Open protocols to metering
 - Open Protocols btw modules
 - IIoT solution enabled

- Interoperability
 - Independent to platform OEM
 - Independent to software provider
 - Independent to Cloud service
Use case – Plunger Lift Automation

- **Objective:**
 - Demonstrate concept of Open-architecture design for plunger lift automation

- **Hardware Design**
 - Commercially available platforms in multiple O/S
 - Low power consumption fit for deployment in remote locations
 - Scalable computing capabilities and expandable digital/analog IOs

- **Software Design**
 - Modularized software framework
 - Separate runtime of control logic and user interface
Field Test

Well #1
- Emerson ROC 107 Flow Computer
- Industrial PC
 - Windows 7
- Software by Naonworks
- Lease operator
 - Remote office
- ABB G4 Flow Computer
- KETI Gateway
 - Linux
- Field I/O

Well #2
- Field I/O
Software – Remote/Local Login

Universal Wellhead Control Plus Naonworks Program IP

127.0.0.1
26977
admin

Connect
Software – IO Setup
Software – Main Page

Real-time demonstration

Hidden Production Data
Software – Alarms/Shut-in

- **High Line Pressure Shut-in**
 - Close Out On Cycle if Line Pressure > 70
 - Enable Permanent ESD on Close-out

- **Low Line Pressure Shut-in**
 - Close Out On Cycle if Line Pressure < 20
 - Enable Permanent ESD on Close-out

- **High Pressure Shut-in Delay**
 - Enable
 - Delay High Line Pressure Shut In for 5 Seconds

- **Low Line Pressure Shut-in Delay**
 - Enable
 - Delay Low Line Pressure Shut In for 5 Seconds
Software – Production Trend

Hidden Production Data
Software – Plunger Specs

UWC Plus

Controller Status
- Lifting
- Advance Control
- Alarms

Plunger Speed and Estimated Plunger Drop Time
- Nominal Plunger Drop Speed: 250 ft/min
- Estimated Minimum Plunger Drop Time: 45.68

Plunger Drop Time
- Plunger Drop Timer: 120
- Plunger Drop Timer Counter: 120.00

Non-Arrival Actions
- Go to Afterflow
- Go to Normal Shut In
- Always Extra Mandatory Shut In
- Progressive Mandatory Shut In

Mandatory Shut-In Time
- Mandatory Total Mins: 240
- Mandatory Shut-In Counter: 0.00
- Execute Mandatory Shut-In After: 3
- Consecutive Non-arrivals: 0
- Consecutive Non-arrival Counter: 0
- Mandatory Transit: 0

Well Geometry Configuration
- Collar Stop Depth: 11420 ft
- Tubing Diameter (I.D.)
 - 2 in.
 - 2 3/8 in.
 - 2 7/8 in.
 - 3 in.
 - Other: 10 in.

Lifting Time
- Lifting Timer: 60
- Lifting Time Counter: 31.90

Universal Wellhead Control
- XTO Energy
- ExxonMobil

Monday, February 11, 2019 9:52:41 AM

Home | Alarms | Trends | Optimization | Configure | Plunger | Adjust

Page | Page | Page | Page | Page | Page | Page
Software – Auto Adjust
Software – User Groups
Conclusions and Next Steps

- Proved concept of open-architecture design
 - Open protocol communication
 - Interchangeable hardware platform, parts and instruments
 - Interoperable software to standard operating environment

- Next Steps
 - Commercialize open-architecture hardware and software technologies
 - Identify and develop more upstream use cases and applications
 - Engage with industry partners to participate in the design and development of open architecture environment
 - Advocate an joint industry efforts to specify and maintain open standards
Field of Future

Camera monitoring conditions within the containment area

Tank Level Sensors to record tank levels and controlled by UWC

Open Architecture Platform: conduct real-time control and automation of wellpad production

Production: Open-architecture software for artificial lift

Optimization: through advanced analytics and "AI"

Remote Monitoring

Camera enabling flare conditions to be monitored remotely
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.