Increasing the Life of Plunger Lift Equipment with BLAZE™ - Thermal Boron Diffusion

Dan Runzheimer
Endurance Lift Solutions
Mechanical wear, corrosion and abrasion are production challenges that customers face during field operations.

Endurance Lift Solutions has partnered with B4C Technologies to introduce BLAZE™ technology to address these challenges.

BLAZE™ treated products have successfully achieved over 400% in run-life improvement over standard metallurgy.
BLAZE™ is a Thermal Boron Diffusion (TBD) process using a proprietary chemical formula to produce a slick, hard intermetallic ceramic Boride layer on metal surfaces.

Microscopic view of BLAZE™ treated surface with solid and uniform depth of .003 inches

Low coefficient of friction
Surface provides reduced coefficient of friction over base metal - permanent lubrication regardless of load

Hardness
1800-2300 Knoop
116 Rockwell C (extrapolated)

Corrosion Resistance
Corrosion resistance enables longer life in challenging downhole and surface conditions facing CO2 and H2S
Features

- Process creates no change in part dimensions/surfaces - is NOT a coating

- Intermetallic ceramic – no risk of bonding breakdown

- No increase in brittleness within the base metal

- Highly resistant to corrosion - impervious to hydrochloric and sulfuric acids

- Proprietary compound is environmentally safe - fully recyclable for a 100% “green” life cycle

MATERIAL COMPATIBILITY

- Cast Iron
- Mild-Carbon Steel
- Chrome-moly Steel
- Stainless Steel
- Inconel/Stellite
Value Creation

• Successfully trialed downhole plunger lift and surface valve equipment – demonstrated run life improvement up to 400%

• Enabled operators to reduce total lease operating expense - reduced routine equipment changes, product purchases and intervention equipment fees

• Decreased HSE risk due to fewer well-related interventions
Case Study – Plunger Lift

KEY FACTS

• Plunger lift is one of the most economical artificial lift methods in the market.

• Maintaining production and longevity of the plunger lift system is highly dependent upon how the mechanical components interact in the wellbore.

• Failure analysis of down-hole plunger lift components demonstrates how abrasion, corrosion and routine mechanical wear inhibit performance.
Endurance Lift Solutions (ELS) assessed various operating parameters of plunger lift systems in three (3) different customers’ wells where traditional variants of plungers were already deployed, such as:

- **Well Configurations/Conditions:** Vertical/Deviated, Highly Abrasive
- **Bumper spring seating depth of three (3) wells:**
 - 7,245 ft Avg; 7,370 ft Max; 7180 ft Min
- **Inclination on deviated wells:**
 - 42.5⁰ Avg; 44⁰ Max; 41⁰ Min.
- **Total # of cycles achieved by traditional plungers:**
 - Well #1: 1,500; Well #2: 1,400; Well #3: 800
- **MTBF on traditional plunger (run-days):**
 - Well #1: 52; Well #2: 56; Well #3: 57

Our assessment consisted of monitoring how BLAZE™-treated plungers wear over time when compared to traditional plungers.
Our team monitored the OD (outer diameter) of BLAZE™ plungers, and the number of cycles per system on a bi-weekly basis for wear.

Each plunger was measured against its initial plunger OD to determine if it was still running within max wear tolerance.

Figure 1: Well #1 - BLAZE™ plunger wear tolerance measurements up to 31 weeks.
RESULTS

o BLAZE™ plunger cycles.

Well #1: 5,547; Well #2: 4,903
Well #3: 1,188. *(POOH) DUE TO WELL ISSUES*

o BLAZE™ plunger run-days per well.

Well #1: 220; Well #2: 184
Well #3: 83 *(POOH) DUE TO WELL ISSUES*

The customer was able to significantly extend the run life of the plungers in these abrasive wells.
Partial evaluation of Well #1 concluded that:

- The BLAZE™ plunger cycled 4,047-times more than the best competitor.
- BLAZE™ plunger OD reduced from 1.9045” to 1.89” in 31 weeks which represents just 72.5% of maximum permissible wear.
- Representative BLAZE™ plunger had 220 days of run-time without the need for replacement.
Case Study – Plunger Lift cont.

Overall evaluation of three (3) wells concluded that:

- 3 out of 3 BLAZE™ plungers achieved better run time compared with traditional plungers
- Two (2) BLAZE™ plungers utilized for our analysis continued to operate and one (1) was POOH due to well production issues.

Overall, enhancing the life span of a plunger allowed the customer to obtain more benefits with the reliable BLAZE™ technology.
Case Study – Trim Kits

Endurance Lift Solutions (ELS) conducted a run-life comparison analysis between carbide and RF85 trim kits with BLAZETM-treated trim kits. Our assessment consisted of monitoring how BLAZETM-trim kits would operate when compared to traditional trim kits.

ELS tracked carbide and RF85 trim kit run-life, in order to compare to BLAZETM treated trim kits.

• MTBF on carbide treated trim kits (run-days):
 Well #1: 21; Well #2: 24; Well #3: 7

• MTBF on RF-85 treated trim kits (run-days):
 Well #2: 24
RESULTS of BLAZE™ treated trim kits

• MTBF on BLAZE™-treated trim kits (run-days).
 Well #1: 92; Well #2: 127

• MTBF on BLAZE™-treated trim kits (run-days). ROOS (REMOVED OUT OF SERVICE)
 Well #3: 39. However, it was ROOS prematurely.

The customer was able to significantly extend the run life of the trim kits in these highly abrasive wells.
Partial evaluation of Well #2 concluded that:

- The BLAZE™-treated 1” trim kit had 127 days of run life, 103 days more than traditional trim kits.
- The BLAZE™-treated 1” trim kits operated 400% longer than carbide/RF85 trim kits in certain applications.

Overall evaluation of three (3) wells concluded that:

- 3 out of 3 BLAZE™-treated 1” trim kits achieved better run life results than carbide/RF85 trim kits.
- 2 out of 3 BLAZE™-treated 1” trim kits utilized for our analysis continued to operate in the field while surpassing carbide/RF85 trim kit run life.
- 1 out of 3 BLAZE™-treated 1” trim kits was removed out of service prematurely. However, wear analysis concluded the kit had substantial remaining useful life.
Overall, enhancing the life span of trim kits allowed the customer to obtain more benefits with the highly reliable BLAZE™ technology.
Mechanical wear, corrosion and abrasion are production challenges that customers face during field operations - BLAZE™ technology addresses these challenges.

BLAZE™ treated products have successfully achieved over 400% in run-life improvement over standard metallurgy.

Endurance Lift Solutions currently offers multiple commercial products with BLAZE™ treatment.

New applications continue to be tested and deployed.
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.