Eliminating slug flow from the horizontal wellbore increases production and reduces costs

Jeff Saponja, P. Eng.
Production Plus Energy Services Inc.
Eliminate slug flow: root cause

- **The Solution:** consistent, regulated flow
 - Flow conditioning prior to the separator and pump

BEFORE HEAL SYSTEM™ INSTALL

![Graph showing inconsistent flow from horizontal](image1)

AFTER HEAL SYSTEM™ INSTALL

![Graph showing regulated consistent flow from horizontal](image2)

Sept. 27 - 30, 2016 2016 Sucker Rod Pumping Workshop
Design to solve common problems with conventional approach

High Total Well Capital Expenditure
- Large artificial lift equipment due to production rate, depth and low efficiency
- Multiple lift systems required after natural flow period
- Complex directional profile to achieve production and geological objectives

High Operating Expenses
- Excessive workovers due to poor reliability and downhole equipment failures
- Expensive workovers due to pumps seized with solids
- Excessive energy consumption due to pump depth and low pump efficiency
- Excessive gas interference and poor runtimes

Production and Reserves Not Maximized
- Inadequate drawdown due to lift system limitations (gas lift, “pump limited”)
- Pump placement limiting ability maximize drawdown
- Persistent high annular fluid levels or pump inlet pressure
Full cycle artificial lift strategy defined by eliminating slugs flows

1. **Control flowback**
 - Reduced proppant flowback and fines generation
 - Lower risks and costs transitioning to artificial lift

2. **Maximize natural flow period (lowest OPEX)**
 - Bend section liquid loading dictates when a well ceases to naturally flow

3. **Transition to rod pump as quickly as possible to minimize OPEX**
 - Stabilize annular fluid level to allow balancing of pump jack and maximization of stroke rate
 - Maximize pump efficiency to extend top end of rod pump capacity (reduce or eliminate intermediate artificial lift)

4. **Maximize rod pump reliability and drawdown**
 - Minimize planned and unplanned workovers
 - Lowest BHP possible to maximize rate and reserves
Design to solve: Mechanical longevity as well declines

- **Significant install base (110+) → through learning curve on potential issues**
 - Anchors are notorious for coming unset leading to significant tubing movement each stroke
 - Sizing critical to ensure system flow conditioning over broad production range
 - Expect and therefore must manage solids

- **Cyclical loadings in pumping wells present a significant design challenge and many subtle failures using routine practice**
 - All components need “infinite fatigue life” (generally defined as over one million cycles)
 - If not infinite life, will fail very rapidly (at 7 SPM, 1 million strokes is ~100 days)
 - Elastomers cannot be subject to movement or pressure / temperature cycles or will rapidly fail
Design for low risk and reliable retrieval in solids-rich environment

- Minimize slug flow to suppress main solids transport mechanism resulting in less solids production
- Sump design to easily contain tons of sand / solids with no adverse effect on pumping or system retrieval
- Design features enable easy retrieval in environments with sand / solids
- Multiple retrievals of the system with no critical issues
 - 10+ systems retrieved
 - Up to 10 tons of sand / solids recovered HEAL System Sump after retrieval
 - Redundant design for the harshest environments
Case Study: Reliability

- Ran pump low to maximize drawdown → multiple pump failures
- Ran pump high → poor drawdown, rod breaks from gas interference
- Pre-HEAL: 9 pump changes in 2.25 years costing $600k
- Post-HEAL: Zero changes in 2+ years
Case Study: Reliability

- Improved pump life and rod life in multiple installs in several basins:
 - Wolfcamp, Permian Basin – longest running rod pump installing for client and ongoing
 - Niobrara, DJ Basin – rod failures every 6 months for prior two years, 12 months post install, no rod failures, ongoing.
 - Viking, central Alberta Canada – multiple solids related pump failures post flowback, since installs (20+) no failures
 - Belly River, central Alberta Canada – multiple solids related pump failures, since installs (10+) no failures
 - Glauconite, central Alberta Canada – multiple solids related pump failures, since installs no failures
Case Study: Gas Interference, NEBC Basin Canada

- Severe gas interference
- In the field, tried multiple downhole separator types (poor boy, packer style) with no improvement
- HEAL System has allowed same pump/rods/jack to more than double production
- Multiple wells in field with HEAL Systems with consistent production uplift
Case Study: Gas Interference, San Andres Permian Basin

- HEAL System solves the root cause of erratic pump fillage
- Regardless of the performance of the downhole separator, like a properly designed packer style gas separator, slug flow leads to gas interference
- Erratic pump fillage compromises rod and pump life
Slug flow is a major impediment to achieving a pumped off condition.

HEAL System positions pump in vertical section ~1200 feet above hz

– achieved lower producing BHP than a pump positioned at 80° inc

Pump placed at or above KOP to improve reliability and lower cost

– reduced size of pump / rods / jack (cost), while achieved reliable lower producing BHP
Case Study: Low bottomhole pressure versus gas lift, Montney Canada

- Gas lift has attractive reliability, but high OPEX and producing BHP
- HEAL System + rod pumping sustained attractive reliability of gas lift, but at significantly lower OPEX and producing BHP
Case Study: Low bottomhole pressure versus gas lift, Anadarko Basin

- Transition from ESP to gas lift resulted in undesirable production performance and higher OPEX
- HEAL System + rod pump maximized drawdown and the well production potential
Case Study: Production Enhancement, Montney Canada

- Montney suffers major rod pumping challenges: deep, high GOR, some areas have very high initial rates, high decline rates
- HEAL System installed in +18 wells with multiple operating companies
- Long term (>12 months) average result is +100% increase in production over previous trend
- Moving towards installing immediately after initial completion, full cycle
Case Study: Production Enhancement, Wolfcamp Permian Basin

• The Permian Basin Wolfcamp formation is challenged by depth, high total fluid rates, high watercuts and severe high GOR gas interference

• Installation in 7 Wolfcamp wells resulted in a sustained +40% increase in production
CONTACT

Jeff Saponja
403-472-1440
healsystem@productionplus.ca
www.pdnplus.com
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.