Carbon Fiber Sucker Rods versus Steel and Fiberglass

Special Thanks to Mark Turland

O. Lynn Rowlan
Echometer Company
Carbon Fiber Rods Were Ran in Two Different Sucker Rod Lifted Wells

• Discuss before and after conditions using dynamometer data

• Carbon fiber rods used to replace 2800 feet of 1.25 inch fiberglass rod in one well.

• Carbon fiber rods used to replace 2800 feet of 1 inch steel N97 sucker rods in a second well.

• Compare carbon fiber sucker rods performance to the fiberglass sucker rods

• Compares carbon fiber sucker rods performance to the high strength N97 steel sucker rods.
Carbon Fiber Rods Weigh ¼ of Fiber Glass and Has 2 X Tensile Strength

04/10/2014 – Fiberglass Rod String

<table>
<thead>
<tr>
<th>Rod Type</th>
<th>Top Taper</th>
<th>Taper 2</th>
<th>Taper 3</th>
<th>Taper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4475.00</td>
<td>2100.00</td>
<td>1500.00</td>
<td>300.00</td>
</tr>
<tr>
<td>Diameter</td>
<td>1.250</td>
<td>1.000</td>
<td>0.875</td>
<td>1.625</td>
</tr>
<tr>
<td>Weight</td>
<td>5772.8</td>
<td>6073.6</td>
<td>3318.0</td>
<td>2300.5</td>
</tr>
</tbody>
</table>

Fiber Glass
- Wt/Ft – 1.29 lbs/ft
- Diameter – 1.25 in
- E – 7.1x10^6
- Density - 153.0 lbs/cu ft
- γ H2O/FG – 0.4079
- Tensile – 115,000 psi

02/24/2015 – Carbon Fiber Rod String

<table>
<thead>
<tr>
<th>Rod Type</th>
<th>Top Taper</th>
<th>Taper 2</th>
<th>Taper 3</th>
<th>Taper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2800.00</td>
<td>2250.00</td>
<td>2950.00</td>
<td>300.00</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.625</td>
<td>1.000</td>
<td>0.875</td>
<td>1.625</td>
</tr>
<tr>
<td>Weight</td>
<td>901.6</td>
<td>6507.4</td>
<td>6525.4</td>
<td>2300.5</td>
</tr>
</tbody>
</table>

Carbon Fiber
- Wt/Ft – 0.32 lbs/ft
- Diameter – 0.625 in
- E – 23.6x10^6
- Density - 143.9 lbs/cu ft
- γ H2O/CF – 0.4336
- Tensile – 235,000 psi
04/10/2014 – Fiberglass Dyno
High Fluid Level with 37.1” Overtravel - Well 1

<table>
<thead>
<tr>
<th>Polished Rod Pump</th>
<th>Peak Load</th>
<th>Min Load</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.27 Klb</td>
<td>8.44 Klb</td>
<td>25.8 HP</td>
</tr>
<tr>
<td></td>
<td>4.37 Klb</td>
<td>-0.75 Klb</td>
<td>14.8 HP</td>
</tr>
</tbody>
</table>

Pump Displacement: 600 BBL/D
Calculated Fluid Load Max: 8.24 Klb
Surface Efficiency: -----%
Pumping Speed: 8.295 spm
Motor to Pump Efficiency: -----%
Pump Intake Pressure: 2006 psi (g)
Damp Up: 0.134
Damp Down: 0.134
Fillage: 98.67%
EPT: 202.4 in
Enter Tubing Pressure: 75.0 psi (g)

PDP = 3425 psi (g)

PIP FL = 1864 psi (g)

Stroke Length = 168.00 in
Fo Max = 8.24 KPD
Fo From Fluid Level (Fo FL) = 3.76 Klb

Stroke: 106 00:12:45
Unanchored KI: 763 lb/in
Kr: 121 lb/in

2016 Sucker Rod Pumping Workshop
Sept. 27 - 30, 2016
Deep Fluid Level with less 256 BPD Due to FG Stretch - Well 1

Polished Rod Pump
- Peak Load: 25.19 Klb
- Min Load: 8.36 Klb
- Power: 25.6 HP
- Peak Load: 9.06 Klb
- Min Load: -0.90 Klb
- Power: 20.2 HP

Pump Displacement: 344 BBL/D
Surface Efficiency: ----
Pumping Speed: 6.767 spm
Motor to Pump Efficiency: ----
Pump Intake Pressure: 370 psi (g)
Damp Up: 0.134
Damp Down: 0.134
Fillage: 92.19 %
EPT: 142.5 in

Stroke Length = 168.00 in
Unanchored Kt: 763 lb/in
Kp: 123 lb/in

Sept. 27 - 30, 2016
2016 Sucker Rod Pumping Workshop
Deep Fluid Level with +13 BPD Due to less CF Stretch - Well 1

Peak Load	Min Load	Power
25.11 Klb | 8.73 Klb | 25.2 HP
7.81 Klb | -0.55 Klb | 18.7 HP

Sept. 27 - 30, 2016
2016 Sucker Rod Pumping Workshop
02/24/2015 – Carbon Fiber Dyno
Deep Fluid Level with +67 BPD increased SPM from 6.77 to 7.09 - Well 1

Polished Rod Pump

<table>
<thead>
<tr>
<th>Peak Load</th>
<th>Min Load</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01 Klb</td>
<td>7.95 Klb</td>
<td>28.1 HP</td>
</tr>
<tr>
<td>7.96 Klb</td>
<td>-0.62 Klb</td>
<td>20.6 HP</td>
</tr>
</tbody>
</table>

Pump Displacement 411 BBL/D
Calculated Fluid Load Max 8.94 Klb
Surface Efficiency ----- %
Pumping Speed 7.087 spm
Motor to Pump Efficiency ----- %
Pump Intake Pressure 816 psi (g)
Damp Up 0.134
Damp Down 0.134
Fillage 96.91 %
EPT 162.6 in
EPT Pressure 50.0 psi (g)
02/24/2015 – Carbon Fiber Dyno

Now Weight Heavy move IN 11 inch ~ Lighter Rod String – Well 1

Min Gearbox Torque, Upstroke
Max Gearbox Torque, Upstroke
Min Gearbox Torque, Downstroke
Max Gearbox Torque, Downstroke
RMS Gearbox Torque
AVG Gearbox Torque
Cyclic Load Factor

Existing
-342.1 Kin-lb
414.5 Kin-lb
-142.2 Kin-lb
883.1 Kin-lb
423.3 Kin-lb
255.8 Kin-lb
1.655

In Balance
-150.2 Kin-lb
630.3 Kin-lb
-293.9 Kin-lb
630.3 Kin-lb
378.1 Kin-lb
254.9 Kin-lb
1.483

Out of Balance

Maximum Counterbalance
Existing Counterbalance
Required Counterbalance Decrease

weights heavy
2142.5 Kin-lb
2130.8 Kin-lb
252.9 Kin-lb

To Balance Move 22.626 Klb weights IN

11.18 in
09/03/2014 – Steel N97 86 Rod String

<table>
<thead>
<tr>
<th>Rod Type</th>
<th>Top Taper</th>
<th>Taper 2</th>
<th>Taper 3</th>
<th>Taper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>3000.00</td>
<td>3050.00</td>
<td>2350.00</td>
<td>200.00</td>
</tr>
<tr>
<td>Diameter</td>
<td>1.000</td>
<td>0.875</td>
<td>0.750</td>
<td>1.500</td>
</tr>
<tr>
<td>Weight</td>
<td>8676.6</td>
<td>6746.6</td>
<td>3815.1</td>
<td>1306.0</td>
</tr>
</tbody>
</table>

N97
- Wt/Ft: 2.892 lbs/ft
- Diameter: 1.0 in
- E: 30.5×10^6
- Density: 490 lbs/cu ft
- $\gamma_{H2O/FG}$: 0.1273
- Tensile: 140,000 psi

02/20/2015 – Carbon Fiber Rod String

<table>
<thead>
<tr>
<th>Rod Type</th>
<th>Top Taper</th>
<th>Taper 2</th>
<th>Taper 3</th>
<th>Taper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2800.00</td>
<td>2250.00</td>
<td>2950.00</td>
<td>300.00</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.625</td>
<td>1.000</td>
<td>0.875</td>
<td>1.625</td>
</tr>
<tr>
<td>Weight</td>
<td>901.6</td>
<td>6507.4</td>
<td>6525.4</td>
<td>2300.5</td>
</tr>
</tbody>
</table>

Carbon Fiber
- Wt/Ft: 0.32 lbs/ft
- Diameter: 0.625 in
- E: 23.6×10^6
- Density: 143.9 lbs/cu ft
- $\gamma_{H2O/CF}$: 0.4336
- Tensile: 235,000 psi
Carbon Fiber Stress is Higher on 0.625” Rod, BUT 48% of Allowable is Lower

<table>
<thead>
<tr>
<th>Diameter (in) / Length (ft)</th>
<th>Grade</th>
<th>Modified Goodman (100%)</th>
<th>Stress (psi (g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3000</td>
<td>N97</td>
<td>77.9%</td>
<td>45564.3</td>
</tr>
<tr>
<td>0.875 3050</td>
<td>S-88</td>
<td>74.9%</td>
<td>42804.8</td>
</tr>
<tr>
<td>0.75 2350</td>
<td>N97</td>
<td>79.0%</td>
<td>40734.2</td>
</tr>
<tr>
<td>1.5 200</td>
<td>SB</td>
<td>31.7%</td>
<td>7145.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter (in) / Length (ft)</th>
<th>Grade</th>
<th>Modified Goodman (100%)</th>
<th>Stress (psi (g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.625 2665</td>
<td>CF</td>
<td>48.0%</td>
<td>79863.4</td>
</tr>
<tr>
<td>0.875 2650</td>
<td>S-88</td>
<td>66.9%</td>
<td>39919.9</td>
</tr>
<tr>
<td>0.75 2900</td>
<td>N97</td>
<td>74.5%</td>
<td>40516.6</td>
</tr>
<tr>
<td>1.5 350</td>
<td>SB</td>
<td>30.6%</td>
<td>7060.4</td>
</tr>
</tbody>
</table>
N97: Stroke #53 02/10/15 02:44:44PM
Peak PRL 35,790 Lbs

Peak Load	Min Load	Power
Pumped Rod | 35.79 Klb | 10.14 Klb | 45.3 HP
Pump | 11.09 Klb | -0.58 Klb | 32.6 HP

Adjustable Pump Displacement: 501 BBL/D
Calculated Fluid Load Max: 12.10 Klb
Surface Efficiency:
Pumping Speed: 9.184 spm
Motor to Pump Efficiency: 549 psi (g)
Pump Intake Pressure:
Damp Up: 0.136
Damp Down: 0.136
Adjustable Fillage: 81.42 %
Adjustable EPT: 116.9 in
Enter Tubing Pressure: 130.0 psi (g)

Unanchored Kt: 518 lb/in
Kt: 177 lb/in
CF Rods Maintained Production w/ 1.75” Pump

CF (API: 25-175 RHBM 34-4)

<table>
<thead>
<tr>
<th>Peak Load</th>
<th>Beam Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>35787 Lbs</td>
<td>98%</td>
</tr>
<tr>
<td>24502 Lbs</td>
<td>67.1%</td>
</tr>
</tbody>
</table>

N97 (API: 25-200 RHBM 22-4)

- **SPM:** 9.184
- **BPD:** 568
- **EPT:** 132
- **Peak Load:** 24502 Lbs
- **Beam Load:** 67.1%

- **SPM:** 9.137
- **BPD:** 552
- **EPT:** 168
- **Peak Load:** 11285 Lbs
- **Beam Load:** 98%

Sept. 27 - 30, 2016

2016 Sucker Rod Pumping Workshop
Steel Rod Result in 912 Gear Box Over Load Both Up Stroke and Down Stroke

N97: Stroke #53 02/10/15 02:44:44PM

958.1 Kin-lb

988.0 Kin-lb

CF: Stroke #21 07/15/15 02:35:32PM

859.9 Kin-lb

689.1 Kin-lb
Acquired 400 HZ Dynamometer Data to Investigate Load Spikes on Pump Card Between TV Close to SV Open.

Load Spikes on Pump Card

Comments: Did a valve test at stroke 16, didn't record it. 400 Hz. No power data. Shut off.
For 1.59 Sec of the 6.54 Sec/Stroke the Rods Stretch to Pickup the Pump Load
Notice Bounce During 1st 1.5 Seconds

Sept. 27 - 30, 2016
2016 Sucker Rod Pumping Workshop
Conclusion

- In these two wells the carbon fiber rods have longer down hole stroke than either fiberglass or steel sucker rods.
- Carbon fiber rods gear box in-balance loading is less than either fiberglass or steel sucker rods.
- 0.625 inch carbon fiber peak rod stress is higher than the peak stress on the 1 inch N97 rods, but the carbon fiber rods were loaded to 48% of the modified Goodman allowable stress.
- As wells are drilled to deeper depths higher strength rods will likely be required.
- Stronger lighter carbon fiber rods have the potential to be used to produce sucker rod wells to extremely deep depths.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.