Dynamic Relative Rod Stretch

Walter Phillips
Consultant
Quick Overview

• What is “Dynamic Relative Rod Stretch”?
 – Sucker rods stretch and contract due to load & velocity changes
 – Think: A bouncing slinky

• Key points:
 – What is the relative elongation?
 – What is the “zero” position?

• If the rods get “too short” they may be in compression
Rod Loading – Rod Stretch

• How long is the rod string?

• When the rods are hanging in the well, they are as long as we say they are
 – Approximately [25ft] x [# of rods]

• But the top half of a given rod is “longer” than the bottom half…
 – Because the top half holds the weight of the bottom half
Gravity Affects Rod Length

- Gravity does not change, so we tend to ignore it
 - Relatively speaking, hanging rods are the frame of reference
 - We don’t calculate based on absolute lengths (impossible to measure)

These rods are slightly longer than these rods which is mostly irrelevant…
How can we just ignore gravity like this?

Simple Answer: Pump Spacing
- Plunger is set relative to the barrel
- Slowly lower the rods till they tap – no dynamic stretch
- We no longer care about the exact “total” length
- Everything becomes relative to some static configuration

When spacing the pump, the rods are already stretched under their own weight
- So if the rods are already stretched (some more than others) what does it take to put a rod into compression?
- The plunger is spaced relative to the bottom of stroke
A bit about the wave equation

• Pump card loads move up & down due to calculation method, rod buoyancy effects, etc.

• Pump cards can also move left & right
 – Gibbs, 1963
 – See page 43 of Gibbs’ book

• So why are all pump cards aligned at zero?
 – We would “rather” see relative stroke length
 – We lose a valuable piece of information – Relative Position
A bit more on the wave equation

• “Position is almost more important than load”
 – Depending on the method of calculation, downhole load is calculated from position
 ◦ Positions are relative to a static position
 – Errors in position translate into errors in load
 ◦ Errors compound/magnify down the rodstring

• What does it take to compress or “buckle” a section of sucker rods?
 – Commonly thought of in terms of forces
 – What about expressing it in terms of length?

These are all relative positions
What is a Dyno Card?

- Load vs. Position
- Implicit time component
- Surface vs. Pump?
 - Time sync’d points
 - Mouseover highlight

Large horizontal spacing between points
Moving Fast

Close horizontal spacing between points
Moving Slow
Dynamic Rod Elongation

- Allow wave equation to place the card left/right
 - Don’t align pump with surface card
- Plot difference in position over time
- Dynamic rod elongation is relative to the static hanging rod length

Surface – Pump = Relative Stretch
Dynamic Rod Elongation

- Gravity lengthens rods
 - This is considered the “normal static” rod length
- Rod length changes with dynamic motion

Static Elongation due to gravity

Rod Compression

Un-stretched Rod (No Gravity/Weight)

Neutral Rod Length “un-stretched”

Static Rod Length (Due to Gravity)

Dynamic forces can elongate rods

Dynamic forces can shorten rods
Visualizing Potentially Compressive Data

• Dyno cards present a lot of data
 – Three dimensions – load, position, and time

• Add some more dimensions
 – Use line/dot colorization
 ◦ Indicate other dimensions
 ◦ Velocity, acceleration, compression…

• Plunger Velocity
 – How close the dots are spaced
 – Close spacing = low velocity
Visualizing Potentially Compressive Data

• Dyno cards present a lot of data
 – Three dimensions – load, position, and time

• Add some more dimensions
 – Use line/dot colorization
 ◦ Indicate other dimensions
 ◦ Velocity, acceleration, compression...

• Plunger Velocity
 – How close the dots are spaced
 – Close spacing = low velocity

• Dynamic Stretch
 – Less useful over the full length of the rodstring
 – Compression occurs locally
 ◦ Better to look at individual rods/sections
Dynamic Stretch Correlation (1)

Colors indicate stretch scale

This dip is due to load

Dynamic Stretch = \(\text{Position}_{\text{Sfc}} - \text{Position}_{\text{Pump}} \)

This dip is due to position only (or relative stretch)
Dynamic Stretch Correlation (2)

Colors indicate stretch scale

This dip is due to load

Dynamic Stretch = Position_{Sfc} – Position_{Pump}

This dip is due to position only (or relative stretch)
• This well is “lightly” tapping...
 – But we don’t see that in the dynamic stretch graph?
 ° Because we are looking at the whole rod string
Localized View

- Individual 25’ rod ~2500ft depth
 - Don’t see anything interesting…
 - Zero does not indicate compression…

At least not yet…

What does this zero line mean?
Localized View

- Individual rod ~5000ft depth
 - Deeper, but still nothing...
Localized View

- Individual rod ~7500ft depth
 - Not yet...
Localized View

• Keep an eye on this region
 – Dynamic stretch is changing rapidly as we go deeper in the well
 – In the same timeframe as the tap

Sept. 27 - 30, 2016

Rod #380
~9,500ft
(~1,500’ over pump)
Localized View

- Hey, what just happened?
 - This rod is getting shorter
 - In the same time-span as the tag

Rod #415
~10,375ft
(~625’ above pump)

Sept. 27 - 30, 2016
Localized View

- Hey, what just happened?
 - This rod just got significantly shorter
 - In the same time-span as the tag

Rod #430
~10,750ft
(~250’ above pump)
Localized View

- Short duration (tap happens fast)
 - Hard to determine true magnitude, but something is obviously happening
 - Appears to affect bottom ~25-30 rods

Sept. 27 - 30, 2016

2016 Sucker Rod Pumping Workshop
Next Steps

• Determine the relative un-stretched rod lengths
 – Better approximate & identify “compression”

• Incorporate wellbore geometry & friction
 – See HWDDDA project

What is the un-stretched length?

Unstretched rod length relative to statically stretched rods
Conclusions

• Dynamic relative stretch can indicate potential issues
 – Provides a more concise view than load indicators alone

• Color-coding dyno graphs can further identify issues

• How does this affect the industry or your bottom-line?
 – Better understanding of rod dynamics
 – Identify when & why it would be wise to slow down
 – Conditions change – pumped off states generally have greater change in dynamic relative stretch
Where can I try this for myself?

- **http://pump-card.com**
 - Still under development – Not fully functional
 - Contact me with questions or comments

- You can upload DYN files and configure the rodstring details to calculate the pump card

- Pre-loaded demo data:
 - http://pump-card.com/pumpedoff
 - http://pump-card.com/full
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.