Using Plunger Surface Velocity to Increase Safety and Production

Mark Scantlebury, President and CEO
Extreme Telematics Corp.
SURFACE VELOCITY TRACKING
An Essential Monitoring and Troubleshooting Tool
Adopting Surface Velocity

• Tracking surface velocity is the first step
 – More visibility into the plunger behavior
 – Identify issues that may have been missed

• Safety
 – Watch for increasing speeds
 – Correct before a potential well head failure

• Maintenance
 – Avoid increased wear on equipment
 – Catch unexpected additional arrivals

• Production
 – Prevent downtime
 – Opportunity to run plungers faster
Surface Velocity when Venting

Problem
- Surface velocity (over 2000 ft/min) was much higher than average velocity (400 ft/min)

Solution
- Keep track of magnitude and frequency to properly align maintenance
- Possibly adjust optimization type or other operational parameters
- Move away from venting
Higher Surface Velocity

• Problem
 – Surface velocity (1200 ft/min) was consistently more than 50% higher than average velocity (750 ft/min)

• Solution
 – Lower average velocity target to reduce equipment wear and possible failure
 – Possibly move away from average velocity optimization on this well
Broken Plunger Investigation

• Problem
 – Some arrivals over 1700 m/min (5500 ft/min)

• Solution
 – Close time was increased to ensure plunger came to surface on first attempt
 – Operator was able to catch issues earlier
 – More timely maintenance
 – Stopped breaking plungers and springs
SAFETY AND PREDICTIVE MAINTENANCE AUTOMATION

Application of Surface Velocity
Impact of Surface Velocity

- Impact at surface is critically important
- Spring and lubricator together absorb the energy
- Repetitive fast plunger arrivals lead to broken plungers and springs
- If spring is compromised, energy is transferred to lubricator
Kinetic Energy

- Velocity is the most important factor in the energy of a moving plunger.
- Plunger mass cannot be ignored as a plunger with double the mass will double the energy.
- Energy of a moving plunger absorbed by the spring at surface.
- Calculate the kinetic energy each arrival:
 - \[E = \frac{1}{2} mv^2 \]
- Move lubricator standards to kinetic energy.
- Controller compares arrival kinetic energy to manufacturer’s specifications.
Predictive Maintenance

- Lubricator springs break down over time
- Related to the cumulative impacts taken
- Create lifetime spring wear parameters based on kinetic energy
- Controller sums kinetic energy to predict spring wear
- Move away from time based replacement of springs
 - i.e. Replace springs every 6 months
Stopping Fast Plungers

• Prefer to be proactive and prevent fast plungers
• Is it possible to react to fast plungers?
• Velocity sensor has to be installed sufficiently far away from spring
• Distance set based on maximum velocity and latency in the overall system
 – Simple calculation \(d = vt \)
Stopping Fast Plungers

• Maximum velocity should be over estimated.
• All latencies need to be factored in
 – Sensor reaction time
 – Controller latency time
 – Communication time
 – Time to actuate valve
• Sasquatch currently has latency of 750 ms

<table>
<thead>
<tr>
<th>Latency</th>
<th>2000 fpm</th>
<th>3000 fpm</th>
<th>5000 fpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 ms</td>
<td>34 ft</td>
<td>50 ft</td>
<td>84 ft</td>
</tr>
<tr>
<td>500 ms</td>
<td>17 ft</td>
<td>25 ft</td>
<td>42 ft</td>
</tr>
<tr>
<td>250 ms</td>
<td>9 ft</td>
<td>12.5 ft</td>
<td>21 ft</td>
</tr>
</tbody>
</table>
PRODUCTION OPTIMIZATION USING SURFACE VELOCITY

Using velocity to increase revenue
Surface Velocity Optimization

• **Goal**

 – Modify system parameters to influence the plunger to arrive at a given velocity.

 – Velocity must be slow enough to be safe, but fast enough to lift fluid.

• **Overview**

 – Each fast or slow plunger arrival causes a proportional adjustment to either the afterflow or close time.

 – Based on patented Arrival Time Optimization.

• **Assumption**

 – Velocity of plunger is dependent on the amount of fluid being brought to surface
Arrival Time Optimization - Afterflow

Algorithm:

$$\Delta \text{Afterflow} = \frac{\text{Rise}_{\text{Target}} - \text{Rise}_{\text{Actual}}}{\text{Rise}_{\text{Target}}} \cdot S \cdot \text{Afterflow}$$

Afterflow = Afterflow Time
Rise = Rise Time
S = Scale Factor

- Fast plunger adds to Afterflow Time
- Slow plunger subtracts from Afterflow Time
- Changes proportional to:
 - magnitude of the target miss
 - Amount of current Afterflow time
- Scale Factor used to dampen the response
Arrival Time Optimization - Close

Algorithm:

$$\Delta \text{Close} = \frac{\text{Rise}_{\text{Actual}} - \text{Rise}_{\text{Target}}}{\text{Rise}_{\text{Target}}} \cdot S \cdot \text{Close}$$

- \text{Close} = \text{Close Time}
- \text{Rise} = \text{Rise Time}
- S = \text{Scale Factor}

- Fast plunger subtracts from Close Time
- Slow plunger adds to Close Time
- Changes proportional to:
 - magnitude of the target miss
 - Amount of current Close time
- Scale Factor used to dampen the response
Close Then Afterflow

- Close Time is minimized as well is unloaded and plunger arrives faster than the target.
- Then Afterflow Time is maximized to increase production while plunger is still arriving faster than target.
- Slow plunger reduces Afterflow Time. If Afterflow Time at minimum, Close Time is increased.
- Fast plunger reduces close once again. If close is at the minimum, Afterflow Time is increased.
- This is a dynamic system that responds to changing conditions and does not require operator intervention.
Optimization Algorithm Results
Velocity Optimization

Algorithm:

\[\Delta AF_{Time} = \frac{V_{Actual} - V_{Target}}{V_{Target}} \cdot S \cdot AF_{Time} \]

AF = Afterflow
V = Velocity
S = Scale Factor

- Based on arrival time optimization
- Safety factor can be reduced to increase production
- Proportionally adjust afterflow and close times based on instantaneous surface velocity
- Makes small corrections on each run instead of trying to stop a dangerously fast plunger
Future Work

• Currently running pilot projects
 – Find ideal velocities for different plunger types to maximize production
 – Adapt algorithms to account for pressure fluctuations

• Adaptation of Sasquatch
 – Continually improve detection and accuracy
 – Add in continual kinetic energy calculation

• Algorithm Building
 – This is just the start
 – Many more ideas expected to spring up
Conclusions

- Surface velocity is key to safe operation
- Opportunity to incorporate predictive maintenance
- Production gains are certainly available
- Surface velocity adoption opens up many more possibilities
- Surface velocity is the future of all plunger lift well operations
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.