Power Line Loss Determination and Analysis

Ken Skinner, Lynn Rowlan, and Jim McCoy
Echometer Company
1. Sensors can be mounted permanently in the electrical box with a water-tight connection on the side of the electrical box for attachment of a small plug-in radio for wireless communication to a PC and base station.

2. Measurements can be performed without opening the electrical box.

3. In addition, starter boxes without permanent mounted sensors can be analyzed using portable sensors that require opening the box and attachment of two current and three voltage sensors.

4. Wireless high-frequency motor power-current-voltage measurements are used to analyze the electrical and mechanical performance of pumping units.
Analysis of the power, voltage, and current data acquired during one stroke answers:

1. What is the total system electrical efficiency of pumping system?
2. Is the surface electrical efficiency less than 80%?
3. Is the overall total system electrical efficiency above 50%?
4. What is the power consumption, $/month, $/BBL, and power demand, KW?
5. What is the motor current? Does the motor overheat?
6. Does the motor generate electricity at some time during the stroke? Is credit allowed for generation?
7. Is the gearbox overloaded?
8. Is the pumping unit properly balanced?
9. Required movement of counterweights to balance unit?
10. What are transmission line losses in relation to power consumption?
Portable Wireless Power Probes with Cable Harness

Used for wells that are not outfitted with permanent external power sensing connector.
Wireless Power Probe Installation

1. Must open switch box door to install the voltage probes between the fuses and the relay switch.

2. When the voltage probes are above the relay switch, the lease line voltage can be monitored while stopped during the traveling and standing valve tests.

3. Portable current transducers can be above or below the relay switch.
Wireless Power Transmitter with Portable Sensors

1. Portable transmitter-receiver with voltage and current sensors attached to a convenient place on the panel by magnetic tape.

2. Line of sight with base station is desired.
Safe Internal Permanent Power Probe Sensors

Requires:
- mounting two current transformers around power wires and attaching three voltage sensing leads to electrical lines and installing safe external connector in switch box.
Permanent Current Probes

External Feed-through

Millivolt current output to connector pins. Current to ground limited to 0.72 mA for 480 V
Externally Connected Portable Wireless Sensor Plugged into Connector Outside Switch Box.

Wireless Transceiver antenna should be line of sight with base station connected to laptop with software.
Sensor connection may be done while pumping unit is operating.

Sensor is powered up then data acquisition and transmission is initiated by depressing “Acquire” switch.

Volts, power and current can be acquired simultaneously with dynamometer data.
1. Most power measurement devices require the operator to open the electrical switch box to install sensors.

2. The operator is exposed to DANGEROUS HIGH VOLTAGE electricity.

3. The cabled portable power transducers installation procedure requires the operator exercises precaution and follows the recommended procedures in the attachment of the voltage and current sensors and uses proper safety equipment.

4. Permanently installed WIRELESS connector for power/voltage/current sensors eliminates risk of coming in contact with powered electrical wires.
Wireless Power is Acquired Simultaneously with Wireless Dynamometer Data
Simultaneous Wireless Acquisition of Polished Rod Load, Polished Rod Position, Motor Power, Motor Current and Motor Voltage while Performing Valve Test.
Power line loss analysis determines the loss between the electrical system transformer and the pumping unit motor.

1. Analysis is performed to determine the power line loss between the electrical system transformer and/or usage measurement meter to the pumping unit motor.

2. Line loss increases as the length of the wire from the electric motor to the meter increases.

3. Power is generated when motor speed increases greater than synchronous motor speed, during the upstroke due to the weight falling helping to lift the sucker rods.

4. Generated power credit to the power bill depends on the contract with the power utility, the location of the measurement meter, and other factors.

5. In some cases the line losses created by the use of a master meter could offset any credit derived from use of re-generated power from the pumping unit.
To Measure Line Loss:
1) Powered Off V9A
2) Off Disposal Well
3) Acquired Data at V11 for 30 minutes
4) Read KWh from Power Meter on Utility Pole
Use Volts and AMPs During SV Test to Determine “R” the Resistance of the Line

Average of 20.0 AMPs When Motor ON

Average of 465.4 Volts When Motor ON Voltage Drops due to “R” Resistance of Line

Average of 483.9 Volts at V11 when AMPs = 0

Motor OFF to Perform Standing Valve Test

\[\Delta E = (483.9 - 465.4) = 18.5 \text{ Volts} \]
\[\Delta I = (20.0 - 0) = 20.0 \text{ AMPs} \]
So, \[R = \frac{\Delta E}{\Delta I} = \frac{18.5}{20.0} = 0.925 \text{ OHMs} \]
Divide R by 2, because 2 wires
\[R = 0.463 \text{ OHMs} \]
Read KWh from Power Meter on Utility Pole Simultaneously Acquire Dynamometer Data
Read Utility Meter 30.72 min Elapsed of Time
Began with Stroke #19 thru Stroke #278

Strokes Similar for 30.72 Min.
Average EPT 66.38 in
Selected Stroke #115 as Representative from #19 - #278 because EPT = 66.38 inch

Select Stroke #115 as Representative
\[R = 0.463 \text{ OHMs} \]

Line Loss = \(I^2 \times R = 21.3^2 \times 0.463 \times 3 \) (3 phase/3 wires)

\[\text{RMS Current} = 21.3 \text{ AMPs} \]

Line Loss = 630 watts or 0.630 KW for Stroke #115

\[\text{RMS Current} = 21.3 \text{ AMPs} \]
Compare Power Analysis to Meter

KWh from Meter Reading:
5 KWh Over Elapsed Time of 30.72 Minutes

KWh from Power Analysis of Stroke #115:
9.0 KW for Power Used during 1 stroke
0.63 KW for Line Loss during 1 stroke
Total Power = 9.63 KW

4.93 KWh Over Same Time Interval of 30.72 min.

4.93 KWh from Power Analysis Compares Very Well to 5 KWh Read from Meter
Electric Power (kW) and Current (Amps)
Input to the Motor over the time for Stroke #115

For Stroke #115 NO Generation Credit for 0.8 KW when RPM>1200
Power Analysis For Stroke # 115

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Min NEMA D Motor Rated HP</td>
<td>16.7</td>
<td>HP</td>
</tr>
<tr>
<td>Rated Full Load AMPS</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Thermal AMPS</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>Gross Input</td>
<td>12.1</td>
<td>HP</td>
</tr>
<tr>
<td>Net Input</td>
<td>10.9</td>
<td>HP</td>
</tr>
<tr>
<td>Demand</td>
<td>9.9</td>
<td>KW</td>
</tr>
<tr>
<td>Average</td>
<td>9.6</td>
<td>KVA</td>
</tr>
</tbody>
</table>

Average Power
- With Generation Credit: 8.2 KW
- No Generation Credit: 9.0 KW

Average Power Factor
- 68.0 %

System Efficiency
- 40.5 %
1. Power line loss determination can be used to evaluate the need and economic benefits of upgrading the power line size for the well (or wells) in question or for designing a correct line size in future installations.

2. Wireless power measurement system is designed to give instantaneous values within 1% of actual values.

3. Electrical cost is one of the highest expenses in operating a well.

4. Electric cost are difficult to reduce, unless the operator knows where the losses are located.

5. Operator will become proficient at reducing electrical cost through the use of the power probes.
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.