Alternate Method of Determining the Speed of Sound for Acoustic Fluid Measurements

Dr. Duncan Earl
Reservoir Management Services, LLC
Fluid Level Determination

- Reflected pressure pulses have long been used in the industry to measure fluid level (i.e. Echometer)

- Fluid Distance = \(\frac{1}{2} \times [\text{Round Trip Time}] \times [\text{Speed of Sound}] \)

- Fluid accuracy depends on accuracy of measuring:
 - Round-trip time
 - Speed of Sound

Capturing reflected signals with Echometer product
Round-Trip Time Accuracy

- Round trip time can usually be measured to better than 1 msec. That accuracy represents a fluid level error of roughly 0.5 ft. (or less)
- This timing accuracy is sufficient for most fluid monitoring applications
- For more demanding applications, timing resolution can be increased through increased data acquisition frequency and higher frequency response pressure sensors.
- Time accuracy isn’t the problem.

Timing accuracy is already pretty accurate and consistent.
Speed of Sound Accuracy

- Speed of sound in gas is hard to measure...
- Speed of sound changes with gas composition, temperature, and pressure
- In a casing, it will be different at different depths
- Goal is to measure the “average” speed of sound in the casing
- If the speed of sound is off by 1%, the fluid level will be off by 1%.

Fluid Level

\[\text{Fluid Level} = \frac{1}{2} \times (\text{speed of sound}) \times (\text{round-trip time}) \]

If speed of sound = 1200 ft/s and Round-trip time = 10.0 s

\[\text{Fluid level} = \frac{1}{2} \times (1200) \times (10.0) = 6000 \text{ ft.} \]

If speed of sound = 1212 ft/s (a 1% difference) and Round-trip time = 10.0 s

\[\text{Fluid level} = \frac{1}{2} \times (1212) \times (10.0) = 6060 \text{ ft.} \]

Speed of sound accuracy is directly proportional to fluid level accuracy.
How is Speed of Sound Measured?

- Three methods:
 - Collar/Joint Counting
 - Marker identification
 - Pump off identification

- All three methods are prone to errors.
Collar/Joint Counting

- Most frequently used method
- An inherently difficult measurement to make
- Pressure pulse width is often greater than the actual joint spacing
- Overlap of reflected signals greatly reduces signal visibility
- Requires extensive filtering of signal (which can cause artifacts)
- Need to accurately know (and enter) the joint spacing for all joints
- What if you don’t have joints?

This is proportionally what a 30ms pulse looks like…
Marker Location

• Only measures the average speed of sound to the “marker” (not the average speed in the full well)

• Requires that the marker location be known/recorded accurately

• Requires information to be entered by the user

• Not useful when fluid is above marker

• Many wells have no marker
Pump Off Identification

- Most accurate method for measuring average speed of sound in casing
- Must be certain, however, that the well is pumped off
- Must be certain of pump depth values and fluid location associated with well being pumped off
- Cannot use this technique when fluid is over pump
- Not suitable for many pumps (i.e. PC)
Testing Collar Counting Accuracy

- 1500 ft. test well fabricated with 17 joints:
 - First 500 ft had 0 joints.
 - Second 500 ft had 17 joints.
 - Last 500 ft had 0 joints.

- Environment known:
 - Acoustic velocity: 1127 ft/s.
 - Well depth: 1507 ft.
 - Pressure: 0 PSig
 - Temperature: ~22°C
 - Joint Spacing: 32.0 ft.

- Fluid level measured with an Echometer
Results

- 10 measurements made
- Echometer detected:
 - Between 23 and 39 joints
 - Speed of sound between 1107 ft/s and 1122 ft/s (a 2% error)
 - Well distance determined to be between 1485 and 1505 ft. (a 2% error)
 - Round trip time was always the same
- A 2% error at 10,000 ft is 200 ft.
- This test had no noise and the joint spacing was known precisely
- Very easy to see how actual well conditions could easily have 3-4% error or fluctuation in measured fluid levels
“Ghost Joints” Look Real (but aren’t)
• Why were 39 collars detected when only 17 were present?

• Most likely due to over-filtering…

• Signal is small, so frequency filtering must be very aggressive

• But too much filtering causes artifacts/ringing at filtered frequency

• Over-filtering can result in a “self-fulfilling” prophesy

• These inherent problems limit the achievable accuracy of collar/joint counting techniques to a few %

Example of Filtering Artifacts…
An Alternate Approach…

- Accidentally stumbled across a new method for acoustic distance measurement…
- A very fast pressure impulse is emitted into casing annulus
- The pressure pulse is made up of many different frequencies
- These frequencies travel through casing gas at slightly different speeds
- The result is that the narrow pulse widens the further the pulse travels
- This is called “pulse dispersion”

Example of Pulse Dispersion…
Early Test Results…

- Tested the degree of pulse dispersion at different distances for different gases (ranging from CO$_2$ to He)
- Found that the speed of sound of the gas did not impact the amount of pulse dispersion…
- Amount of pulse dispersion was only dependent on actual distance traveled
- Ergo, pulse dispersion measures distance to fluid independent of the speed of sound
- Testing on artificial well shows that technique can consistently determine distance to ±1 ft at 8000 ft.
Pulse dispersion is a differential effect. For varied casing gas compositions it appears to be independent of the actual speed of sound.
Comparison with Collar Counting...

Using Collar Counting

Using Pulse Dispersion
Benefits...

- Allows fluid depth to be determined very accurately and completely eliminates need to make difficult speed of sound measurement.
- Removes #1 cause of variability in fluid level measurements.
- Could be used to precisely determine average speed of sound in well (samples total gas column).
- Can be used with wells with continuous/coiled tubing or no tubing.
- Does not require collar/joint spacing to be known or entered (one less step).
- Can be easily incorporated into existing products.

Coiled Tubing
Summary...

- Current methods of speed of sound measurement are inadequate
- New “pulse dispersion” technique greatly improves the accuracy with which fluid levels can be determined
- Patent app submitted and technique is currently undergoing field trials
- Dispersion in gases is a complex phenomena. Extensive testing and modeling still needed...
- Field trial data to be released next year...

MaxPro5000 product currently being upgraded to incorporate new pulse dispersion technique.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.