Gas Slugging in a Horizontal Well fitted with an ESPCP

Don Brown, Director of Artificial Lift Engineering
Russell Bookout, Principal Engineer
Franklin Electric Co., Inc.
Initial Installation – 75 BPD Pump 1

- Screened shroud (screen below motor)
- 75 BPD ESPCP
- 10 Hp Submersible Motor
- Drive & Control System (with telemetry)
- Hung on coiled tubing with rubber centralizers
Well Information

- Fayetteville Shale
- Horizontal
- Toe-up
- 5.5” Casing
Initial Operation – 75 BPD Pump 1

- Upon initial gas production, the system began tripping for overload
- Run time before tripping was relatively consistent in the range of 10-20 minutes
- Theorized that gas was building up in the heel of the well and periodically being released as a large bubble
- This large bubble enveloped the shroud and completely filled it with gas that was then drawn into the pump
Control Valve – 75 BPD Pump 1
Installed in Gas Discharge Line on Surface

Valve Open
100 psi casing

Valve Close
after 2 hours

Motor Start
after 2.5 hrs

Motor Stop
trip on gas

Casing Pressure Builds up with Valve Closed

Rising Casing Pressure Pushes Water Level Down

(5 MINUTE DATA LOGGING INTERVAL)
Lab Testing To Prove Slugging Theory

- Mounted a 6” tube at 85° from vertical, inserted a shrouded pump
- Air tank fed end of tube to simulate large gas bubble
- Gas trapped in the shroud - motor load looked like it did in the well

Trip due to gas

Restart – gas not cleared
Lab Testing To Prove Slugging Theory

- Tested an ESPCP with no shroud in same set up
- Handled substantially more gas – (70 psi vs. 25 psi feed)
- System tripped
Lab Testing To Prove Slugging Theory

- Inserted a pump with an inverted shroud
- Could not get pump to trip due to gas
- 2 air lines – 100 psi feed pressure
In January, the area was unseasonably cold, resulting in frozen pipes. Line pressure dropped. Operation changed after high motor load event. Pump was unable to surface water and level began to rise.
System Failure - 75 BPD Pump 1

• The pump was pulled and brought to the lab for testing and analysis

• We found substantial wear in this pump and it was no longer able to pump any fluid
 • Large number of run-dry events
 • Over-pressure due to freezing at surface
New Opportunity – 75 BPD Pump 2

- Incorporate learnings from lab testing
- Install new system with inverted shroud
New Opportunity – 75 BPD Pump 2

- Incorporate learnings from lab testing
- Install new system with inverted shroud

LIQUID RESERVE IN SHROUD ALLOWS CONTINUOUS OPERATION THROUGH PASSAGE OF LARGE GAS BUBBLES
New Opportunity – 75 BPD Pump 2

• When gas started flowing the pump was able to operate without the surface control valve

• The inverted shroud had the desired effect

• We still experienced tripping due to large gas bubbles, but pump restarted
Second System Failure – 75 BPD Pump 2

- 1 month of operation
 - water reaching the surface began to taper off
 - Within a few days, water was no longer reaching the surface
- Leak in the tubing string was discovered
To eliminate the tripping altogether, we made 2 modifications:

- Lengthened the inverted shroud to increase fluid reservoir
- Moved the pump assembly further up the well (75° azimuth angle)
Second Opportunity – 150 BPD Pump

- The longer inverted shroud provided more capacity to fend off a gas bubble
- The more vertical setting helped increase the speed with which a large gas bubble clears our equipment

Successfully eliminated tripping due to gas bubbles
Current Status

• Operating for more than 7 months
• Still occasionally incurring gas event causing a trip
• Made a control change to add a backwards “bump” to every start pre-lubricate after gas event
• Recent Bucket Tests show some wear but still pumping at 80% of catalog curve value at lowest speed
• Well leveled off and varies between 145 feet and 170 feet above pump – cannot pull it down further
• Gas production still good
Conclusions

A properly applied ESPCP system can work in a horizontal gas well

- Inverted shroud to fend off large gas bubbles – PC pump handles small bubbles well
 - Applicable to ESP’s to deal with large bubbles
 - Inverted shroud can trap solids – screen mesh can be varied

- Control system capable of monitoring and responding to a variety of system parameters

- Positioning above the bottom of the well can help in dealing with large gas bubbles and solids
Acknowledgments

The authors would like to acknowledge the contributions of Southwestern Energy to this project.
Contact Information

Franklin Electric

• Don Brown – email: dbrown@fele.com

• Russell Bookout – email: rbookout@fele.com
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.