Retrofit Deep Gas Lift
System Overview, Deployment History and Real Results

Jake Bramwell
Global Product Line Manager
Thru-Tubing Packer Systems
Weatherford International
Agenda

Presentation Outline

• Design Concept & Installation History
• Deep Gas Lift System & Equipment
• Deployment
• Lessons Learned
• Real Results
• Case Study
• Conclusions
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
DGL Design Concept

- The WidePak™ Deep Gas Lift (DGL) system was originally designed to combat liquid loading in gas wells.
- As reservoir pressure declines, hydrostatic head from water influx can overcome the wells’ ability to naturally flow.
- Vast amounts of mobile gas can be stranded.
- This DGL concept was born from the pursuit of lifting water and allowing stranded mobile gas to produce.
DGL Design Concept

- DGL differs from conventional gas lift (G/L) in two obvious areas:

 1) Gas Lift Gas Wells

 - Typically G/L is applied to oil wells to lighten the density of the liquid phase

 - Gas lifting gas wells is less common since gas will generally flow naturally

 2) Gas Lift below the Production Packer

 - Typically G/L is achieved through side-pocket mandrels.

 - G/L can usually only be introduced no deeper than the production packer

 - This can be several thousand feet from the perforations.
DGL Design Concept

Liquid level balances reservoir pressure – gas well will not flow naturally

DGL system permits the introduction of gas lift below the production packer

Deep gas lift entry improves the hydraulic efficiency, enabling the lifting of water, and mobile gas production can commence
Installation History

- WidePak DGL system concept developed in 2009.
- 5-1/2” Pilot system deployed in Spring 2010.
- 8 more systems installed since.
 - North Sea
 - 4-1/2”, 7” and two additional 5-1/2” Systems
 - Alaska
 - Four 4-1/2” Systems
Two Trip Straddle Injection System using:
DGL Cross-flow Injection Sub
&
Weatherford WidePak™ Packer
All system components successfully tested & qualified (including anchor and all sealing elements) to ISO14310 V0
DGL System Specifications

SPECIFICATIONS

<table>
<thead>
<tr>
<th>TUBING SIZE (in.)</th>
<th>TUBING WEIGHT (lb/ft) (ID Range)</th>
<th>PACKER SIZE (in.)</th>
<th>MAXIMUM GAUGE RING OD (in./mm)</th>
<th>MAXIMUM PACKING ELEMENT OD (in./mm)</th>
<th>PACKER BODY ID (in./mm)</th>
<th>UPPER SEAL BORE (in./mm)</th>
<th>TEMPERATURE PRESSURE RATING (°F/°C)</th>
<th>RELEASE FORCE (lbf/N)</th>
<th>MINIMUM PRODUCTION FLOW AREA Sq. In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1/2</td>
<td>9.2-10.2 (2.962-3.022)</td>
<td>272 x 181</td>
<td>2.720 69.088</td>
<td>2.722 69.14</td>
<td>1.81 45.97</td>
<td>2.187 55.55</td>
<td>40° to 275° 4.5° to 135°</td>
<td>3,700</td>
<td>16,458</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 34,475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1/2</td>
<td>12.6-15.1 (3.741-4.000)</td>
<td>366 x 238</td>
<td>3.660 93.218</td>
<td>3.654 92.812</td>
<td>2.375 60.325</td>
<td>2.875 73.025</td>
<td>40° to 325° 4.5° to 162.8°</td>
<td>9600</td>
<td>42,703</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 34,475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.5-12.6 (3.885-4.110)</td>
<td>372 x 238</td>
<td>3.720 94.996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>5-1/2</td>
<td>17-23 (4.578-4.976)</td>
<td>447 x 300</td>
<td>4.470 114.300</td>
<td>4.455 113.157</td>
<td>3.000 76.200</td>
<td>3.625 92.075</td>
<td>40° to 325° 4.5° to 162.8°</td>
<td>9600</td>
<td>42,703</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 34,475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.5-17 (4.819-5.030)</td>
<td>470 x 300</td>
<td>4.700 119.380</td>
<td>4.655 118.237</td>
<td>3.625 92.075</td>
<td>5,000 34,475</td>
<td></td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>29-35 (5.801-5.892)</td>
<td>572 x 400</td>
<td>5.725 145.415</td>
<td></td>
<td>4.000 101.600</td>
<td>4.812 88.19</td>
<td>40° to 325° 4.5° to 162.5°</td>
<td>9600</td>
<td>42,703</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 34,475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-29 (6.088-6.466)</td>
<td>593 x 400</td>
<td>5.930 150.622</td>
<td></td>
<td>5.710 145.034</td>
<td>4.000 101.600</td>
<td>40° to 325° 4.5° to 162.5°</td>
<td>9600</td>
<td>42,703</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 34,475</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DGL System BHA’s

- Lower Packer
- Slotted Joint
- PBR (Polished Bore Receptacle)
- Injection String (CT or Jointed Pipe as needed, additional unloading stations optional)
- DGL Injection Sub
- Upper Packer
- Spacer Pipe – as needed
- Cross-Flow Injection Sub (optional check valve)
- RS Anchor
- Injection Tube
- Stinger Seal Assembly
DGL Deployment

• Pre-Job Considerations
 • Test all well control equipment for integrity.
 • Perform integrity test on tubing and injection annulus.
 • Utilize caliper logs to identify any severe wall loss at setting depth.
 • Rig-up slickline and perform a series of drift runs to insure straddle assembly can make it to depth.
 • E-line run to punch tubing if required.
DGL Deployment - Lower BHA

- Set on HD Wireline, Coiled Tubing, or WO Rig
- Length, Weight and Type of Tailpipe (CT vs. JP)
 - Will determine conveyance method and type of setting tool.
 - Depending on available injection pressure, longer installations may require additional unloading stations to assist initial well kick-off
- Depth Correlation Critical
 - Set directly below existing GLM or tubing punch
 - E-line deployed - preferred if feasible
 - CT Deployed
 - Tag no-go or HUD, EOT /Nipple Locator
 - CT stretch calculations
DGL Deployment – Upper BHA

• Requires ability to stab two consecutive seal assemblies.

• Set Via HD Slickline/Braided Cable (Primary)
 – Ability to stab into the upper packer and then “tap” down using the mechanical (spang) jars to ensure that both seals are fully engaged and the anchor is latched.
 – Ability to take 1500# overpull to confirm that assembly is fully engaged.
 – Setting tool with slickline trigger.

• Coiled Tubing or Jointed Pipe (Secondary)
 – Brute force stab-in
 – Hydraulic setting tool
Well Candidate Assessment

- Punch Holes in Tubing @ 9200ft.
- Run 3.72” OD System and utilize 3.688” RPT Nipple as a No-go for depth control
Lessons Learned

• Cutting coil at the BOP
 – Use of a remote hydraulic cutter
 – Rigging for pipe straightening
• Rig-up
 – CT Work Windows extended
 – Cromar Quick test subs for pressure testing
• Stabbing upper assembly via braided line with mechanical spang jars.
 – CT attempted on 4-1/2” system with difficulty.
• Depth correlation of lower packer on coil is vital
• Punch tubing after setting the lower packer??
 – Use packer test tool and junk basket for debris management.
 – Potential to circulate annulus clean

Feb. 3 – 7, 2014

2014 Gas-Lift Workshop
Real Results

• Pilot 5-1/2” Installation in Q2-2010 took a well shut in for 2.5 years and came online producing in excess of 6 MMSCFD.
 – Initial Installation required 17 days, payout in 70 days.
• Second 5-1/2” Installation successfully completed in Q1-2011 and also producing in excess of 6 MMSCFD.
• Installation of Pilot 4½” system was in Q2-2011 – Brought online in May 2012 at over 5 MMSCFD.
• 4 Well installation completed in March 2013 - Alaska.
 – Average installation in 2-3 days.
 – Jointed Tailpipe vs. CT – Up to 3200ft.
 • Integral GLM’s used to assist unloading
 – Lower BHA deployed with HD E-line vs. CT
Real Results – Well A

Stabilized at over 2.5 MMSCF/day
Case Study – Velocity String vs. DGL

• Well B:
 – 4-1/2” Completion
 – SITP: 280 psi
 – FTHP: 60 psi
 – Production: 210 bopd, 92 bwpd,
 – GL gas: 1 MMSCFD, GL orifice: 3/8”
 – Velocity String: 1.75 CT, ID: 1.688”
 – ER Packer set @ 3,750 ft- MDKB
 – End of Velocity string: 5,248ft-MDKB

• Well C:
 – 4-1/2” Completion
 – SITP: 460 psi
 – FTHP: 60 psi
 – Production: 221 bopd, 30 bwpd
 – GL Gas: 1.1 MMSCFD, GL orifice: 3/8”
 – Velocity String: 1.75 CT, ID: 1.688”
 – ER Packer set @ 3,400 ft- MDKB
 – End of Velocity string: 5,400 ft-MDKB
DGL Production Improvement - Well B

G/L Velocity String

<table>
<thead>
<tr>
<th>System</th>
<th>Operating Pressure (psia)</th>
<th>Liquid Rate (STB/d)</th>
<th>Oil Rate (STB/d)</th>
<th>Water Rate (STB/d)</th>
<th>Formation Gas Rate (MMSCF/d)</th>
<th>Injection Gas Rate (MMSCF/d)</th>
<th>Water Cut (Fraction)</th>
<th>Produced GOR (SCF/STB)</th>
<th>Injection MD (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/L VS</td>
<td>402.8</td>
<td>300</td>
<td>210</td>
<td>92</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
<td>2404.8</td>
<td>5240</td>
</tr>
<tr>
<td>DGL</td>
<td>379.6</td>
<td>461.4</td>
<td>322.9</td>
<td>138.4</td>
<td>0.16</td>
<td>0.4</td>
<td>0.3</td>
<td>1738.6</td>
<td>5240</td>
</tr>
</tbody>
</table>

112 bopd Increase
DGL Production Improvement - Well C

G/L Velocity String

<table>
<thead>
<tr>
<th>System</th>
<th>Operating Pressure (psia)</th>
<th>Liquid Rate (STB/d)</th>
<th>Oil Rate (STB/d)</th>
<th>Water Rate (STB/d)</th>
<th>Formation Gas Rate (MMSCF/d)</th>
<th>Injection Gas Rate (MMSCF/d)</th>
<th>Water Cut (Fraction)</th>
<th>Produced GOR (SCF/STB)</th>
<th>Injection MD (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/L VS</td>
<td>513</td>
<td>250</td>
<td>221</td>
<td>30</td>
<td>0.11</td>
<td>0.9</td>
<td>0.12</td>
<td>4591.4</td>
<td>5400</td>
</tr>
<tr>
<td>DGL</td>
<td>298.7</td>
<td>1069</td>
<td>940.8</td>
<td>128.3</td>
<td>0.47</td>
<td>0.9</td>
<td>0.12</td>
<td>1456.7</td>
<td>5400</td>
</tr>
</tbody>
</table>

720 bopd Increase
Looking Forward

• Production Case Study
 – Install system in “Well C” – DGL vs. Velocity String

• 6 Well Project in Indonesia – Q2 2014 Installation
 – 1.75” CT Injection string lengths up to 6000ft.

• 2-3 New installations in Alaska
 – Re-Install of existing system with integral unloading station, and 2 new wells.

• Additional candidates identified in Asia Pacific, West Africa, and North Sea operating regions. Currently in planning phase.
Conclusions

- Deep Gas Lift is a viable Thru-Tubing Intervention option that can be installed in most wells regardless of completion design.
- WidePak DGL is a suitable alternative to breath life into older oil & gas wells suffering from production decline or water influx.
Thanks & Questions