Modeling and Control for Deliquification of Shale Gas Wells

Arun Gupta, N. Kaisare, N. N. Nandola

ABB
Overview

Deliquification in shale gas wells

- Optimal operation
- Plunger lift process
- Modeling of plunger lift
- Benefits of real time control
Optimal operation

... a stable operation

... higher than “normal production”

Mathematically

• Maximizes the production (or an objective)
• Minimize the operating cost
• Respect the system constraints i.e. stable operation
Regulatory control

- Base control
- Operates at a given set-point
- Given by
 - Operators
 - Optimization engineers
Minimum bottom-hole pressure

Bottom-hole pressure decreases => Production increase

Bottom-hole pressure decreases as the flow increases.

\[Q_{\text{max}} \]

\[P_{\text{static}} \]

\[P_{\text{res}} \]
Advanced control

• Provides dynamic set-points to regulatory controller
• Maximize production / Minimize cost
• Responds quicker to disturbances
• But; needs detailed system information
A Model

- A representation of a particular system in mathematical equations
- For control/operation
 - First principles model
 - Black – box model
 - Grey- box model
- Allows us mimic the system, thus, predict and control

\[
\begin{align*}
\varepsilon \mu c \frac{\partial m}{\partial t} &= \frac{1}{r} \frac{\partial}{\partial r} \left[k r \frac{\partial m}{\partial r} \right] \\
\frac{\partial m}{\partial r} \bigg|_{r_c} &= 0; \quad \frac{\partial m}{\partial r} \bigg|_{r_w} = q \frac{T P_{sc}}{T_{sc} \pi h k}
\end{align*}
\]
Artificial Lift system modeling

• Horizontal section
 – Reservoir properties
 – Fracing
 – Well completion

• Vertical section
 – Intermitted
 – Plunger lift
 – Gas lift
 – Pumps
Reservoir dynamics

- Inflow Performance Relationship (IPR) curve
- Proxy model
- Geological models
 - Single porosity model
 - Dual porosity model

Multiple simulators:
- Mwell (Meyer and Associates)
- Eclipse, Petrel (Schulmberger)
- WEM Shale (P.E. Moseley & Associates, Inc.)

Proxy model Knudsen et al. (2012)
Plunger Lift - Cycle

1. **Valve close**
2. **Liquid buildup**
3. **Plunger reaches well bottom**
4. **Valve open**
5. **Plunger lift**
6. **Liquid loads Pressure ↓**
Plunger dynamics

- Plunger moving up
- Gas out
- Plunger at Top
- Plunger moving down
- In gas
- In liquid
- Slug
- Plunger at Bottom

Feb. 27 - Mar. 2, 2011
Plunger falling

- Valve close
- Liquid build up
- Orifice flow across plunger
- Pressurization
 - In Tubing
 - In Casing

Pressure force:
\[(P_{\text{top}} - P_{\text{bot}})A_t\]

Drag force:
\[
\frac{c_D}{K_w^2} \left(\frac{1}{2} \rho v^2 \right)
\]

Avery & Evans (1988)
Plunger at bottom

- Valve close
- Liquid build up
- Gas pressurization
 - In Casing
 - In Tubing

![Graph showing flow vs. bottom-hole pressure](image_url)
Plunger rising

- Valve Open
- Gas flowing in tubing and casing
- Pressurization in tubing below plunger
- Force balance on plunger to calculate velocity and position

\[
\frac{f \rho_l v^2}{2} \frac{(L_s)}{d_t} \quad P_{top}A_t
\]

\[
P_{bot}A_t
\]

\[
(m_p + \rho_l L_s A_t)g
\]

\[
m_{p+s}
\]

Gasbarri & Wiggins (1997)
Plunger at top

- Valve Open
- Gas flowing in tubing and casing
- Gas flowing from tubing to sales line
Full model

S-1
Plunger Rising
Well Flowing

S-4
Plunger at bottom
Well Pressurize

S-2
Plunger at Top
Well Flowing

S-3
Plunger Falling
Well Pressurize

V. open

h = H

h = 0

V. close
Simulation - Pressure

![Pressure - PSI Graph](image)

- **Pressure (psi)** vs. **Time (min)**
 - Casing
 - Tubing
 - Line

Graph Details:
- Pressure ranges from 150 to 400 PSI.
- Time ranges from 0 to 200 minutes.
- The graph shows changes in pressure over time for different parts of the well system.
Simulation - Flow

Flow - MSCF/D

Time (min)
Simulation – Rise Velocity

Time (min)

Velocity - ft/m

Velocity

0 2 4 6 8 10 12 14 16 18 20

0 100 200 300 400 500 600 700

0 2 4 6 8 10 12 14 16 18 20
Real – Time control

Controller

Plunger lift model (mimic’s well)

Pressure, Flow and Arrival measurements
Insights

- Well simulation engine provides playground for operators
- Different control strategies can be compared for a given well
- The well dynamics demand a continuous change in control action. A constant timer/pressure based is sub-optimal.
- Advanced control rejects line pressure and well reservoir disturbances for optimal and stable operation
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.