Improved Hydraulic Tubing Anchor Design

Bob Smithwa
Black Gold Pump & Supply
http://blackgoldpump.com
Overview

• What is a hydraulic tubing anchor?
• Why use a hydraulic tubing anchor?
• Hydraulic Anchor Components
• Case Study
• Engineering a better anchor
• Conclusion
Tubing Anchors – General Overview

- Stabilize pump motion relative to sucker rod
What is a hydraulic tubing anchor?

- Designated as “R” type anchors
- Holds the tubing to the casing
- Reduces wear on:
 - Sucker Rods & Couplings
 - Tubing
 - Casing
- Reduces stress and vibration
- Increases production
 - Increases bottom hole plunger travel
Why use a hydraulic tubing anchor?

- Simple Install & Removal
- Reduced likelihood of stuck anchor
- Minimal skill or experience needed
- Rebuildable/Repairable

- Casing gas can easily flow
- Mandrel bypass allows capillary tubes
How they work

• Where to Install:
 – 2 to 4 joints above the shoe or seating ring
 – Place drain 1 to 2 joints below the anchor
 – Place anchor above the perforations

• To Activate:
 – +70 PSI pressure differential (tubing\rightarrow\text{casing})
 – When pressure in the tubing string is greater than the pressure in the casing (+70 PSI), the anchor is activated

• To Retrieve:
 – Unseat the pump or blow the drain
 – Anchor releases when the tubing pressure is equalized
Hydraulic Anchor Components

- Live Slip
- Piston & Seal Cup
- Guide
- Sleeve
- Mandrel
- Collar
- Patent Pending
- Fixed Slip
How did we get here?

• Hydraulic anchors were failing under extreme conditions
 – Hydraulic anchors were the operator preferred anchor type

• Needed to improve existing anchor designs
 – Fix the flaws, improve runtimes

• Case study: Approximately 80 wells
 – Deep, long stroke mechanical systems
 – Relatively high stroke rates – Extreme operating conditions
 – Anchors from two manufacturers
Design Flaws – Existing Anchors

- **Machining process – Insufficient tolerance specification**
 - Piston-to-Bore clearance was inconsistent
 - Machined surface finish – Insufficient plating adhesion
- **O-ring groves improperly spec’d for application**
 - Too loose, Too tight – very inconsistent
- **Piston Over-travel**
 - Existing anchor size options incorrectly applied to various casings
- **Assembly Procedures**
 - O-rings damaged on installation
Machine Process – Surface Finish

Old
Rough Surface

New
Smooth Surface
Assembly Process

Sharp edges damage O-rings on assembly

De-burred edges

Old

New
Insufficient Tolerance Specification

Piston rocking & Sleeve washout

Specify Tolerances

Improve machine shop compliance
Piston Over-travel

Mechanically Limit Piston Travel

More Mandrel Sizes for Various Casing Sizes
O-ring Issues

- Properly size o-ring grooves according to industry specs
- Tighter Machined Tolerances
- Proper Handling
Engineering a better anchor

• Improved machined tolerances
 – Consistent Piston-to-Bore Clearance
 – Reduced Piston-to-Bore Clearance

• Properly specified o-ring groove dimensions

• Limit piston travel
 – More sizes for better casing fit
 – Mechanical stop/limit

• Machined surface finish
 – Better adhesion of plating
 – Better for sealing surfaces
Selecting the right anchor

• To start you need to know:
 – Fluid Level, Casing Size, Casing Weight, Tubing Size, Pump Bore, Pump Depth, Anchor Depth, Well Temperature

• Load – Thrust Calculation:
 – Must have Thrust > 130% of Load
 – Two anchors “DR” can be used if not > 130%
 – DR anchors must be separated by 1 to 2 joints
Conclusion

• Hydraulic anchor components engineered to perform
• Increased runtimes
 – Too soon to draw final conclusions
 – Results so far are very promising
• No design-related failures
 – One instance of a split o-ring
 • Likely due to assembly error
 ✓ Assembly process amended
• Pulled anchors look good
 – (Pulled due to unrelated well work)
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.