Improving the Reliability & Maintenance Costs of Hydraulically Actuated Sucker Rod Pumping Systems

Chris Hodges
Hydraulic Rod Pumps, Intl.
http://hrpi.com
Overview

• What is a Hydraulic Rod Pump?

• Brief History of Hydraulic Rod Pumps

• Design & Engineering Tradeoffs

• Examples of Maintenance Improvements
What is a hydraulic rod pump?

- Hydraulic cylinder actuates the sucker rods
- Bolt on replacement for traditional systems
- Long Stroke Capability
- Easy Stroke Rate Adjustment

Identical Downhole Assembly
A brief history of hydraulic rod pumps

• First developed in the 1940’s
 – Originally developed for the long-stroke capability
 – Deep, high volume, or troublesome wells*
 – Early Systems
 • Centrifugal, high volume, low pressure hydraulics
 • Positive displacement, low volume, high pressure
• 1970’s & 1980’s – Counterbalance
 – Shorter stroke lengths, more complex
• Many different systems & manufacturers

*D.M. Jones, 1950
Why have they not been commercially viable?

- ~65 years and dozens of manufacturers
- Macroeconomic fluctuations in the market
- Lack of support & training
- Niche market

Leaks & Maintenance!
No External Leaks

• Submerged polished rod
 – Integral stuffingbox / hydraulic seal
 – No external wellhead leaks

• Leaks are contained in production lines
• Cross contamination of fluid possible
 – Need extremely robust hydraulics
Leaks Cleanly Recycled

- Most hydraulic leaks are not critical failures
 - O-rings drip, hoses weep
- Unrepaired leaks eventually cause shutdown
 - External leaks make a significant mess

Locate hydraulic components in the tank to capture minor leaks safely and cleanly.
Design & Engineering Tradeoffs

- Ideal hydraulic sucker rod pump system:
 - Ultra Long Stroke (288”... 336”)
 - Simple (easy to maintain)
 - Mechanically efficient @ surface (i.e. counterbalanced)

- Pick two.....

- Our approach:
 - Ultra Long Stroke
 - Simple & Reliable
Long Stroke

- Reduced downhole wear and tear
- Better surface to pump stroke ratio
 - Less cumulative stroke inches lost to stretch
- Better gas handling characteristics

\[
\text{Compression Ratio} = \frac{\text{Swept Vol} + \text{Unswept Vol}}{\text{Unswept Vol}}
\]

- Structural & torque limitations
 - Large pumpjacks are mechanically limited
 - Hydraulics have no “damaging” torque limitations
Simple & Rugged

- How complex can they get?
- Simple may not always be better, but it helps.
Simple & Rugged

- Simple hydraulic valving
 - Easy to troubleshoot & repair
- No sensors at the wellhead*

- Polished rod contacts both produced, and hydraulic fluid
 - Necessitates highly contamination tolerant hydraulics
 - Limits exotic control mechanisms – Must be simple & durable

- Rotary vane hydraulic pump
 - Inexpensive & extremely tolerant of solids in hydraulic fluid

*Patent Pending
Preventative Maintenance

- Rubber components deteriorate (Hoses & O-rings)
 - Cause leaks and loss of production (i.e. shutdowns)
 - Fix leaks before they cause damage
- Ensure consistent training & support
- Neglect breeds contempt
 - A unit in severe disrepair is difficult to justify extensive repair
 - Repair small problems before they turn into big ones
Conclusion

• Hydraulic systems have improved
• They still leak, but can be properly contained
 – Prevent external messy leaks
 – Minimize low-oil shutdowns
• Long stroke is particularly suited to some wells
 – Other lift methods might have been the only choice
• No external moving parts – “More Safe”
• Easy install – Portable
 – No concrete pad required, Bolts directly to the wellhead
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.