Wear Resistant Coatings for Sucker Rod Couplings

B. Zhao, T. Anderson, M. Chelf, B. O’Donnell (URC)
D. Ertas, T. Haque, H. Jin, A. Ozekcin, S. Rajagopalan (CSR)
J. Bailey (EMDC)
M. Wilson, F. Marzuka (EMPC)

9th Annual Sucker Rod Pump Workshop
Renaissance Hotel

September 17-20, 2013
Oklahoma City, Oklahoma

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1A of ExxonMobil’s latest report on Form 10-K or information set forth under “factors affecting future results” on the “investors” page of our website at www.exxonmobil.com). This material is not to be reproduced without the permission of Exxon Mobil Corporation.
Outline

• Motivation

• Coating Background

• Test Overview
 • Laboratory Analysis
 • Short Term Field Trials
 • Long Term Field Trials

• Summary
Motivation

Sliding, loading, and impacts between sucker rod couplings and tubing can lead to coupling wear and hole-in-tubing (HIT) failures.

Reducing wear to couplings and tubing will:

- Reduce frequency of failures
- Reduce workover costs and risks
- Reduce interrupted production
- Reduce material replacement costs

Solution

- Wear Resistant Coatings
Coating Background

Diamond-like Carbon (DLC) coatings:

• Amorphous mixture of diamond-like (sp3) and graphite-like (sp2) bonds
• Low friction against steel <0.15
• Low wear rates
• High hardness >1700 VHN
• Low counterface wear, “casing/tubing friendly”
• Chemically inert
• Modify properties with addition of other materials
• Deposited by vacuum chamber process: PVD, PACVD
DLC Variations

Not all DLCs are created equal

Diamond sp^3

Graphite sp^2

Hydrogen

Chemistry variation
Test Overview

Laboratory Analysis
- CETR Tribometer: Wear durability, Friction coefficient
- Hardness, Impact, Scanning Electron Microscopy, etc.

Short term (3 month) field trials
- Tested 24 unique coating variations in 3 trial phases in 1 well

Long term durability field trials
- Tested best 2 coatings in 8 wells

Commercialization
Laboratory Analysis

Block on ring tribometer configuration:
- Coefficient of friction
- Block wear
- Coating loss

DLC Coating on Coupling Ring
10kg load, lubricant with 2% sand

Uncoated
Coated
Laboratory Analysis

Block on ring tribometer configuration:

- Coefficient of friction
- Block wear
- Coating loss

![Diagram of laboratory analysis with tribometer configuration and results](image-url)
Short Term Field Trials

Objective:
- Build understanding of coating durability in field conditions
- Compare durability performance between coatings

Well Details:
- History of HIT failures
- Rod rotation
- Operated 24 hrs/day
- ~1800ft depth
- <3° dogleg severity (DLS)
Short Term Field Trials

Method:

• 24 unique coating variations on spraymetal couplings
 • 8-9 types per test phase
 • 64 couplings in well
• Install couplings without rod guides to maximize contact and wear
• Place coatings in sequential order (ABCABC…) to avoid positional bias
• Run each phase for approx. 3 months, or 4,500 miles of travel
• Assess coupling wear, rod wear, tubing wear

Results:
Short Term Field Trials

Coating Wear:

- Ranked coatings on scale of 1, 2, or 3 based on visual inspection of relative coating wear
 - 1 – near perfect
 - 3 – mostly worn
- Performance consistent with lab results

![Graphs showing wear ratings for Phase 1 and Phase 2 with coatings labeled A to M.](image-url)
Short Term Field Trials

Coating Wear vs. Uncoated Coupling Wear:

- Best coated couplings from Phase 1 and 2 show negligible wear
- Deep abrasive wear marks observed on uncoated couplings after test
- Coatings reduce wear to couplings
Short Term Field Trials

Tubing Wear:

• Data shows minimum wall thickness in each tubing joint
• Coated couplings are more tubing friendly than uncoated couplings
• Performance consistent with lab results

- 0.190" w.t.
- 0.162" w.t.
- 0.126" w.t.
Long Term Field Trials

8 wells with top 2 coatings identified from short term field trials

- ~2100ft depth (~70 couplings)
- <3° DLS

Historic average hole-in-tubing failure every 6-7 months for similar wells across field

Coated wells ran 12-18 months before HIT failure

- 50+% increase in well uptime between HIT failures
- 5 wells still ongoing

FRCs pristine after 8 months

Extensive wear and well failure at 7 months
Summary

• Sought solution for frequent HIT wear failures
• Evaluated coating friction and wear performance in laboratory tests, short term field tests, and long term field tests
• Coatings provide wear protection to couplings and to the tubing counterface
• Based on field trial results, coatings may increase the well uptime between HIT workovers by over 50%
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.