Plunger Lift Optimization for Horizontal Wells

Dave Dahlgren, Regional Business Manager
PCS Ferguson
PLUNGER LIFT OVERVIEW
Plunger Lift Overview

Plunger lift is one of the most economical ways to optimize well production

- Low installation costs
- Low operating costs
Plunger Lift Advantages

- Removes accumulated liquids in gas wells, allowing them to produce
- Increases efficiency of gas lift systems
- Minimizes down time and blowing to the atmosphere
- Provides an alternative to surfactants
- Controls paraffin and hydrate buildup
- Removes and prevents scale buildup
Plunger Lift Optimization

Plunger lift may be the most logical choice, but optimization is key

- Site Evaluation
- Plunger selection
- Shut-in method
- Turn-on method
Site Evaluation

- Wellhead design
- Facility design
- Adequate pressure / flowline
- Vessel pressure requirement
Plunger Types

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Continuous Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needs shut-in time</td>
<td>Minimal or no shut-in time</td>
</tr>
<tr>
<td>4:1 GLR</td>
<td>High gas and liquid volumes</td>
</tr>
<tr>
<td><130 Bbl/day</td>
<td>Up to 200 Bbl/day</td>
</tr>
<tr>
<td><350 Mcf/day</td>
<td>Minimum of 350 Mcf/day</td>
</tr>
<tr>
<td></td>
<td>Optimum operating angle is 40-45°</td>
</tr>
</tbody>
</table>

June 3 - 5, 2013

2013 Appalachian Basin Gas Well Deliquification Workshop
TURN-ON METHODS
Turn-on Methods

- Time
- Differential Pressure
- Build-up Pressure
- Load Factor
Time

Utilizes a set of time-based values to operate the well

• Open, closed
• Delay (sales)
• Fall time
• Mandatory shut-in time
Differential Pressure

Evaluates differential pressure between two or more values

- Casing – Line
- Tubing – Line
- Casing – Tubing
Load Factor

Looks at the instantaneous well data available before the well turns on

- \((\text{Casing} – \text{Tubing} / \text{Casing} – \text{Line}) \times 100\)
- Rule of thumb: less than 50% should result in successful plunger operation without venting
SHUT-IN METHODS
Shut-in Methods

- Casing Dip
- Flow Rate (Critical K)
- Time
- Absolute Pressure
- Differential Pressure
Casing Dip

- High GLR Wells have better success
- High PI well don’t work well
- Reservoir Strength is factored in
Flow Rate (Critical K)

• Works well in most cases
• High GLR wells can often be run more aggressive
• Constant well flow calculation
• There can be a lag between EFM and Well Control Device
• Vertical Well Assumptions
Time

- Are you guessing at after flow?
- Can cause well to load up if parameters change
- Requires more time on location to optimize
- May lose production if sharing facilities
Absolute Pressure

• Known operating values are a must

• Criteria can change

• Good results if used in the right application
Differential Pressure

• Tubing – Line
• Casing – Line
• Casing – Tubing
• May not be as effective as Critical K or Casing Dip
CASE STUDIES
Case Study A – Well Specs

- Horizontal well
- 6300 ft.
- Plunger set @ 45 degrees
- Packerless completion
- Sand and known tubing restrictions present
Case Study A – Well Specs

- Sporadic production caused by dramatic swings in line pressure
- Sand
- 1.875 X Profile nipple
- Periodic unloading/venting
- Conventional plunger
- Turn-on method: Tubing-Line
- Shut-in method: Critical flow and Casing Dip

June 3 - 5, 2013
2013 Appalachian Basin Gas Well Deliquification Workshop
Case Study A – Results

• Changes Made:
 – Unsuccessful continuous flow operation
 – Used stand-alone LAP plunger
 – Turn-on and shut-in methods unchanged

• Results:
 – Successful plunger operation
 – Predictable production
 – Stabilized flow rates
Case Study A – Results
Case Study B – Well Specs

• Horizontal Well
• 6300 ft.
• Plunger is at 45 degrees
• Packerless completion
• Sand production and tubing restrictions present
Case Study B – Well Specs

- Sporadic production caused by dramatic swings in line pressure
- Sand
- 1.875 X Profile nipple
- Periodic unloading/venting
- No plunger lift
- Turn-on method: Tubing-Line
- Shut-in method: Critical Flow and Casing Dip

June 3 - 5, 2013
2013 Appalachian Basin Gas Well Deliquification Workshop
Case Study B – Results

Graph showing data from 2/1/2013 to 5/3/2013 for Gas Volume (MCF), Static Pressure (PSI), Water (BBL), Casing Pressure (PSI), and Tubing Pressure (PSI).
Case Study B – Results

Changes Made:

- Tried conventional but moved to continuous flow plunger
- Turn-on and shut-in methods unchanged

Results:

- Fluid recovery
- Additional gas sales
- Lower bottom hole flowing pressure
Case Study B – Results
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.