Sideload and Wear in Rod Pumped Deviated CBM Wells

Tom Cochrane, Joe Colley, Elizabeth Kane

ConocoPhillips
San Juan CBM “S” Wells

• Sideload vs. Runtime
• Sideload vs. SPM
• Repair #1
 – Hole in tubing in unguided slant section
• Repair #2
 – Significant wear in sinker bar interval in slightly deviated slant section
San Juan CBM “S” Wells

- Drill down vertically from surface
- Curve and slant to get to desired bottomhole location
- Curve down then drill vertically down and complete in CBM zone
- Shallow curves have significant sideloads
Sideload and “Runtime”

• Runtime
 – Adjusted historical runtime based on how many months the well was producing at or near capacity and therefore unloaded (all water pumped out of the well)
 – Some wells have pump-off control capability. Runtimes not adjusted for the possibility of pump off control. Industry reported runtimes do not usually account for POC off-time

• Rod Guides in Bare Tubing
 – Typically ran 5-8 guides per rod in curved sections. Guides per rod data not available for all wells
 – Typically guided depth intervals for which SRod recommended > 3 guides/rod
Sideload vs. “Runtime”

- “Years Unloaded” instead of runtime
- Some wells have some history of POC
- Some wells have failed (black squares).
- Two have been repaired
- You can probably achieve runtimes > 5 yrs with < 200# sideloads, with guided rods
SPM and Sideload

- There was some variation of SPM in the well’s history
- Tested range of SPM’s noted in records
- SPM has little effect on sideload
Repair #1

- Maximum sideload is 380#
Tubing Split
Unguided

- Ran 8/2006
- Tubing leak 1/2012
- Failed at 60# sideload in un-guided slant section
- Three other red band joints in unguided slant section
- Corrosion possibly a factor
- Consistent wear in guided section; wear absorbed by guides
- Minor rod wear on bottom 1/3 of rod couplings
- Most rods re-run
Guide Wear
- Downhole pump failed due to wear
- Note small dogleg in sinker bar section. Sinker bar section has sideload as high as the lower curve, despite much lower dogleg severity.
Sinker Bar Wear

- The top 15 rods (unguided) showed significant wear on couplings
- The top 4 sinker bars were worn down to the threads on the couplings
- All other rods were in good condition
- A little more rod wear on tubing in the deeper curve
- Corrosion present
Sideload vs. Runtime

- The two repaired systems may have run longer if:
- Guided in slant section
- No sinker bars in slant section

"S" Well Runtimes

0 100 200 300 400 500
0 2 4 6 8 10
Max Sideload (lbs)

Years Unloaded

Failures:
- Wear, Sinker Bars
- Leak, Unguided

POC: Passed organizer check
No Active POC: No organizer check
Failed: Failed organizer check
Conclusions

• You can probably achieve 5 year runtimes with guided rods at less than 200# sideloads

• One well is still running after 8 years with 190 lb sideload

• Strokes per minute has a small effect on sideload

• Guide everything with sideload > 30 lb, or just everything...

• Sinker bars in a slightly deviated section had significant wear in a short period of time
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.