Steel Sucker Rod Fatigue Testing – Update on Phase I

by
Norman W. Hein, Jr., P.E.
&
David Eggert
NPS – Norris/AOT
Content

• Background – Sucker Rod Fatigue
• Phase I Testing
• Phase II – Current Testing
• Conclusions & Recommendations
Background - Goodman Diagram 1926
API Modified Goodman Diagram (MGD)

\[S_a = \left(\frac{1}{M} + M S_{min} \right) SF \]

\[S_a = (0.25T + 0.5625 S_{min}) SF \]

\[S_a = S_{a1} - S_{min} \]

Where:
- \(S_a \) = Maximum Available Stress, PSI (N/mm²)
- \(S_{a1} \) = Maximum Allowable Range of Stress, PSI (N/mm²)
- \(M \) = Slope of \(S_a \) Curve = 0.5625
- \(S_{min} \) = Minimum Stress, PSI (N/mm²) (Calculated or Measured)
- \(SF \) = Service Factor
- \(T \) = Minimum Tensile Strength, PSI (N/mm²)
MGD - API Grade C Rods

![Graph showing minimum tensile strength vs. stress (1000 psi)]
Atlas of Fatigue Curves - 1986

![Graph showing fatigue curves for different conditions.](image)

- **A**: In air
- **C**: In acid brine
- **D**: In acid brine with inhibitor

Axes:
- **Y-axis**: Applied Stress (psi)
- **X-axis**: Number of cycles to failure

Legend:
- **E**
- **B**
- **F**
1. Based on improvements in manufacturing techniques and quality, 10,000,000 API cycle life is conservative

2. Instead should expect >50,000,000 cycles
Nor-Peening® Results – Grade 97

<table>
<thead>
<tr>
<th>Force (lbs)</th>
<th>Stress Amplitude (ksi)</th>
<th>Number of Test</th>
<th>Average Life Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>89.64</td>
<td>2</td>
<td>27,515</td>
</tr>
<tr>
<td>80</td>
<td>83.12</td>
<td>2</td>
<td>50,782</td>
</tr>
<tr>
<td>70</td>
<td>76.60</td>
<td>3</td>
<td>114,787</td>
</tr>
<tr>
<td>60</td>
<td>70.08</td>
<td>5</td>
<td>170,005</td>
</tr>
<tr>
<td>50</td>
<td>63.56</td>
<td>6</td>
<td>139,482</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force (lbs)</th>
<th>Stress Amplitude (ksi)</th>
<th>Number of Test</th>
<th>Average Life Cycles</th>
<th>Percent Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>89.64</td>
<td>2</td>
<td>62,946</td>
<td>129%</td>
</tr>
<tr>
<td>80</td>
<td>83.12</td>
<td>2</td>
<td>164,748</td>
<td>224%</td>
</tr>
<tr>
<td>70</td>
<td>76.60</td>
<td>3</td>
<td>498,713</td>
<td>334%</td>
</tr>
<tr>
<td>60</td>
<td>70.08</td>
<td>3</td>
<td>7,702,305</td>
<td>4,431%</td>
</tr>
<tr>
<td>50</td>
<td>63.56</td>
<td>1</td>
<td>21,696,977 (NO FAILURE)</td>
<td>INFINITE</td>
</tr>
</tbody>
</table>
Grade 97 Fatigue Curve - Tulsa University
Rotary Bending Fatigue

Average Life Cycles
Nor-Peening® vs. Non-Shot Peened

Stress Amplitude (PSI)

Average Life Cycles

Norris Nor-Peened Test Results
△ Non-Shot Peened Results

09/25-28/2012 2012 Sucker Rod Pumping Workshop
Phase I Testing

• 2 Objectives
 – Nor-Peening® effects on grade 96 rods
 – Comparison benchmark
Bending Fatigue Test Machines

Smaller Tester:
• 4 ft long rod
• ¾” max diameter
• 400 rpm

Larger Tester:
• 8 ft long rods; coupled too
• 1-1/8” max diameter
• 600 to 800 rpm
Grade 96 Peened vs. Unpeened
Fatigue Life Competitor’s Comparison

Performance At 40% Load

<table>
<thead>
<tr>
<th>Rod Grade</th>
<th>Cycles to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norris 96 Peened</td>
<td>200,000</td>
</tr>
<tr>
<td>Norris 97 Peened</td>
<td>170,000</td>
</tr>
<tr>
<td>MFG A Special 1</td>
<td>150,000</td>
</tr>
<tr>
<td>MFG A Special 2</td>
<td>140,000</td>
</tr>
<tr>
<td>MFG A API D1</td>
<td>130,000</td>
</tr>
<tr>
<td>MFG A Special 3</td>
<td>120,000</td>
</tr>
<tr>
<td>MFG A API D 2</td>
<td>110,000</td>
</tr>
<tr>
<td>MFG A Special 4</td>
<td>100,000</td>
</tr>
<tr>
<td>MFG A API D 3</td>
<td>90,000</td>
</tr>
<tr>
<td>MFG B Special</td>
<td>80,000</td>
</tr>
<tr>
<td>MFG B API D 1</td>
<td>70,000</td>
</tr>
<tr>
<td>MFG B API D 2</td>
<td>60,000</td>
</tr>
<tr>
<td>MFG B API D 3</td>
<td>50,000</td>
</tr>
<tr>
<td>MFG C API D</td>
<td>40,000</td>
</tr>
<tr>
<td>MFG C Special</td>
<td>30,000</td>
</tr>
</tbody>
</table>
Phase II - Current Status

- Initiated air fatigue testing of welded, spoolable rods in bend fatigue test machine.
- Started tension-tension (axial) loading of rods in MTS machine to determine if comparison can be obtained between bending fatigue and axial fatigue.
- Partial results show axial – tension/tension has higher fatigue life (as expected) due to less damage than full reverse loading.
Conclusions & Recommendations

- Nor-Peening® proven effective on grades 96 & 97 special high strength rods
- Nor-Peened® fatigue life ~150% to ~1500% greater than compared competitors
- Variation in internal versus external fatigue life results needs further investigation
- MTS air fatigue data and possible correlation will be useful to verify expected life
- Testing needs to continue including corrosion fatigue and connection testing
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.