Gas Lift for Long, Perforated Intervals

Darryl Polasek, VP of Business Development
Chandler Frost, Regional Business Manager - Gas Lift

Production Control Services (PCS)
Introduction

• More wells being drilled and completed with long perforated intervals – deep verticals and long horizontals with multiple zones.

• Insufficient velocities below the packer can cause liquid loading.

• New innovations in gas lift make it a viable option for long perforated intervals.
Typical GL System

- Fluid level in tubing and casing is at the surface
- No gas injected – no fluid produced
- All gas lift valves are open
- Pressure to open valves is provided by the weight of the fluid in the casing and tubing
Typical GL System

- Gas injection into casing
- Fluid U-tubes through all open valves
- Fluids produced from annulus only - pressure in the wellbore at perfs is greater than reservoir pressure
Typical GL System

- Fluid is unloaded to the top (#5) gas lift valve
- Fluid is aerated above this point in the tubing, decreasing flowing gradient
- Pressure is reduced at top valve, as well as all lower valves
- Unloading continues through lower valves
Typical GL System

- Fluid level now below valve #4 (second from top)
- Injection transfers to valve #4 and pressure is lowered
- Casing pressure drops and valve #5 closes
- Unloading continues through lower valves
Typical GL System

- Gas is injected through valve #4
- Lower valves remain open
- Reduced casing pressure causes upper valves to close in sequence
Typical GL System

- Gas is injected through valve #3
- Lower valves remain open
- Reduced casing pressure causes upper valves to close in sequence
Typical GL System

- Upper valves are closed

- Valve #2 = Point of Injection
 Ability of reservoir to produce fluid matches the tubing’s capacity to remove fluids

- Casing pressure dictated by operating valve set pressure

Valve #1 remains submerged unless operating conditions change in the reservoir (i.e. formation drawdown)
Gas Lift Advantages

- Flexible to meet changing conditions
- Cost-effective
- Unaffected by sand
- Effective in high GLR wells

AND

- Suitable for deviated and horizontal wells
- Suitable for wells with multiple production zones
- Suitable for multi-well pads
Below Packer Gas Lift

Extending the Range of Gas Lift Applications
Gas Lift Below the Packer

- The deepest point of injection is no longer limited by the packer
- Gas can be injected below the packer to the most efficient point of lift
- Liquid in the perforated zone is aerated, decreasing the flowing gradient
- Velocity of flow is increased by reducing the effective flow area
Gas Lift Below the Packer

Reduced bottom-hole pressure
+ Increased drawdown

Increased critical velocity, even below the packer
Below Packer Gas Lift Types

Common Below Packer Installations

• Annular Bypass Assembly (ABA)
• Dip Tube
• Enhanced Annular Velocity (EAV)
• Marathon AVE
Annular Bypass Assembly (ABA)

- Hybrid of a conventional gas lift system with packer and an open-ended, packerless system
- Utilizes tubing and gas lift valves above packer and a bypass assembly through the packer
- Production is normal up the tubing, and no adjustments are needed on the wellhead
- Ultimate point of lift can be the end of tubing, allowing for decreased flowing bottom hole pressure compared to a standard packer completion
- Most applicable where deviation of the wellbore limits how deep a packer can be set
ABA Advantages

• Prevents fluid loading above the packer during well shut-ins or offset frac activity
• Allows for lift around end of tubing in deviated or horizontal wells where a packer is desired at a shallower depth
• Inexpensive system using a gas-lift mandrel and check for flow cross-over
• Can be used with packer of choice
Below Packer Gas Lift
Horizontal Annular Bypass Assembly
Below Packer Gas Lift
Vertical Annular Bypass Assembly
Dip Tube

- Utilizes a crossover flow adapter and a unique mini well bore below the packer
- Lift gas travels down the casing annulus above the packer, through the crossover flow adapter and into the injection string below the packer
- Production flows up through the crossover flow adapter into the production tubing and to surface
- Deepest point of injection is achieved without applying back pressure on the formation
- Able to successfully lift large casing wellbores in perforations with lesser amounts of compression
Below Packer Gas Lift
Horizontal Dip Tube System
Enhanced Annular Velocity (EAV)

• Utilizes tubing and gas lift valves above packer, and an injection string with internally mounted gas lift valves below

• Lift gas travels through the casing annulus, through the crossover flow adapter and into the injection string below the packer

• Production flows up the annular area, through the crossover flow adapter and into the production tubing to surface
Below Packer Gas Lift
Horizontal EAV System
Marathon AVE

- Similar to EAV, but crossover flow adapter and all gas lift valves above and below packer are wireline retrievable
- Lift gas travels through the casing annulus, through the crossover flow adapter and into the injection string below the packer
- Production flows up the annular area, through the crossover flow adapter and into the production tubing to surface
- Patented Marathon system
Gas Rate Requirements

- **Dip Tube**: Example (2-7/8” x 1-1/4”) 400 MCFD total gas requirement*
- **EAV and Marathon AVE**: Example (2-7/8” or 3-1/2” x 5-1/2”) 800 - 1,000+ MCFD total gas requirement
- **ABA**: Example (2-3/8”) 400 MCFD total gas requirement

Liquid Production (highly variable)

- **Dip Tube**: lower liquids (average <500 Bbl/d)
- **ABA, EAV, Marathon AVE**: higher liquids (average >500 Bbl/d)

*Total gas requirement includes compressed gas plus produced gas
Other Considerations

• Production Philosophy
 – Marathon AVE: planning for inevitable future decline
 – Dip Tube, AVE, EAV: dealing with today’s production issues

• Other Variables to Consider
 – Geometry of the wellbore: Toe-Up, Toe-Down, Deviated or Vertical
 – Declining reservoir pressure
 – Producing well head pressure
 – Current flowing bottom hole pressure
Conclusion

- More wells are being drilled and completed with long perforated intervals
- Gas lift is cost-effective and flexible to meet changing conditions
- Recent gas lift innovations can now achieve deeper point of injection below the packer
- These systems create adequate velocity below the packer to recover fluids, reducing flowing bottom hole pressure and increasing drawdown
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.