Gas-liquid flow optimization with a Bubble Breaker device

- Petrobras Research Center
Petrobras R&D Center, Rio de Janeiro
Introduction

• Bubble breaker was first presented by Shell engineers (Schrama and Fernandes, 2005):
 – Experimental and field tests

• Objective is to break the bubbles into smaller diameters, or change the flow pattern
Motivation

- Smaller bubbles reduce hydrostatic pressure drop and delay the transition to slug flow

(Guet et al., 2003)
Motivation

• Lower rise velocity \rightarrow Greater void fraction \rightarrow lower hydrostatic pressure gradient.

\[\bar{\rho} = \rho_G \alpha + \rho_L (1 - \alpha) \]

\[\alpha = \frac{Q_G}{A \cdot V_G} \]
Motivation

- Bubble rise velocity increases with bubble diameter.

=Celata et. al., 2007

(Parkinson et. al., 2008)

(Tomiyama et. al., 2002)

(Nguyen et. al., 1998)
Experiments

• This work presents experimental results to evaluate the device:

 – Pressure measurements:
 • At four locations along the pipe.
 • Ratio of Pressure Gradients before and after the bubble breaker.
 – \(R = \frac{\text{Press. Grad. After}}{\text{Press. Grad. Before}} \)

 – Detailed videos: high-speed camera.
Experimental facilities

- Air
- Water
- Bubble breaker device
- Pipe: ID=50mm, L=10.83m
- Rotameter
- Rotameter
- Water
• 3 different geometries: 1 plate with orifices and 2 Venturi
Test conditions

- Test conditions:
 - $Q_L = 6 - 21 \text{ L/min}$
 - $Q_G = 9 - 90 \text{ L/min}$
 - Air and water
Videos

- Dispersed bubbles
- One elongated bubble
- Slug flow
Pressure loss results

QL=6 L/min

QL=12 L/min

QL=16.8 L/min

QL=21 L/min
Values of R lower than 1 indicates that the Bubble Breaker is effective!
Results

• Bubble breaker is more effective at the Disperse Bubbles flow pattern (higher liquid flow rates).

• Geometry should be studied for each application.

• Reduction in the Pressure Gradients must be compared to local pressure drop.

• Next works: Different geometries to enhance bubble breaking while reducing local pressure drop.
References

1 – Schrama, E. and Fernandes, R. “The bubble breaker: breaking up slug flow into dispersed bubbly flow using a passive mechanical device”. BHR Group 2005 Multiphase Production Technology 12

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.