Is Gas-lift in its Current State Ready to Support Deep Gulf of Mexico Production Planned for 2015 and Beyond?

Wayne Mabry
Team Lead
Shell E&P Wells Artificial Lift
2015 and Beyond Requirements

Well conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth</td>
<td>4000 – 10000 ft (1219 – 3048 meters)</td>
</tr>
<tr>
<td>SBHP</td>
<td>15000 – 24000 PSI (1034 – 1655 bar)</td>
</tr>
<tr>
<td>SBHT</td>
<td>250 – 375 °F (121 – 191 °C)</td>
</tr>
<tr>
<td>Injection Gas Pressure at FCD</td>
<td>5000 – 9000 psi (345 – 621 bar)</td>
</tr>
<tr>
<td>Injection Gas Rates</td>
<td>10 – 15 MMscfd (283 – 424 MSm³/d)</td>
</tr>
</tbody>
</table>
What does Gas-lift Compete Against?

- Caisson ESP systems
- Subsea multiphase boost pumps
- Subsea horizontal ESPs
- Subsea separator with liquid boost pumps
- Subsea water separation and reinjection
BC-10 Caisson ESP System

6 Wells

Manifold

Oil Pipeline

2 Caisson ESP Boost Systems

Gas Pipeline (optional)
Tordis SSBI
Produced Water Separation and Injection and Multiphase Boosting

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>StatoilHydro</td>
</tr>
<tr>
<td>Location</td>
<td>Norway</td>
</tr>
<tr>
<td>Water depth</td>
<td>650’ (220 m)</td>
</tr>
<tr>
<td>Step-Out</td>
<td>6.9 mi (12 km)</td>
</tr>
<tr>
<td>Design Pressure</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Liquid Capacity</td>
<td>100,000 bwpd and 50,000 bopd</td>
</tr>
<tr>
<td>MultiPhase Pump</td>
<td>Helico-Axial to 68% GVF 2.3MW 450 psid (38 bar.d)</td>
</tr>
<tr>
<td>Water Injection Pump</td>
<td>Single Phase 2.3MW 1100 psid (75 bar.d)</td>
</tr>
<tr>
<td>Installation/Start</td>
<td>August 2007 / November 2007</td>
</tr>
<tr>
<td>Scope of Work</td>
<td>Subsea Separator Station, Pump, control</td>
</tr>
</tbody>
</table>

- **First sand management system**
- **First density profile (sand, water, emulsion, oil and foam)**
- **First semi-compact separator (centrifugal gas separation and by-pass)**
- **Semi-compact separator 2.0m od x 12m t/t**
Total Pazflor Angola

Gas-Liquid Separation and Liquid Boosting

- **Client:** Total
- **Location:** Angola
- **Water depth:** 2700’ (740 m)
- **Step-Out:** 2.5 mi (4.5 km)
- **Design Pressure:** 2,750 psi
- **Process Capacity:** 110,000 bopd and 35 MMSf/d (1.0 MMSm³/d)
- **Gas Tolerant Pump:** Hybrid to 18% GVF
- **Gas:** Free flows through 2 x 6” flowlines
- **Project Award:** December 2007
- **Scope of Work:** Subsea Separator Station, Pump, control

- First Gas-Liquid Gravity Separation system
- First Hybrid pump system with subsea barrier fluid control
- Separator 3.5m od x 9.0m t/ t
Cascade / Chinook
Horizontal ESPs in Cartridge

Client: Petrobras Americas
Location: GoM Lower Tertiary, Walker Ridge
Water depth: 8800’ (2700 m)
Step-Out: 14 mi (25.0 km)
Design Pressure: 12,900 psia
HV Penetrator
Process Capacity: 2 Cartridges per Station
40,000 bpd per Station
Gas Tolerant ESP: ESP to 15% GVF
22,000 bopd pump systems
Series Pumps 2 x 0.6 MW
3200 psi duty - 1600 psid (110 bar.d) each
Project Award: August 2007
Solution: ESP Liquid Boosting
Scope of Work: Subsea Pump System, PDU/UTH, manifolding, Controls, Flow Manager

- First Series ESP system
- First Series ESP with first ESP designed to handle gas (to 30%)
- First Single cable connecting two ESPs (electrically parallel)
- First Horizontal ESP packaging
- Cartridge 9’ x 14’ x 91’ long x 205,000 lbs

Courtesy of FMC
Petrobras Congro & Corvina
Gas-Liquid Separation and Liquid Boosting

Client : Petrobras
Location : Brazil
Water depth : 650’ (197 m) and 900’ (280m)
Step-Out : 7 and 5 mi (11 and 8 km)
Design Pressure : 3,000 psi
Process Capacity : 20,000 bopd ea. and 30 MMSf/d (850 MSm3/d)
Gas Tolerant Pump: ESP to 10% GVF
1 x 20,000 blpd pump
0.4MW 300 psid (20 bar.d).
Gas: Free flows
Project Award : May 2011
Scope of Work : Subsea Separator Station, Manifold, Pump, control

» Gas-Liquid Gravity Separation system on torpedo pile
» Separator 1.0m od x 35m t/t VASPS
» Subsea pig-launcher and diverter valve for pigging gas or liquid lines

Courtesy of FMC
Petrobras Marlim Brazil
Produced Water Separation and Injection Pilot

Client: Petrobras
Location: Brazil
Water depth: 2950' (900 m)
Step-Out: 3 mi (5.0 km) from P-37
Design Pressure: 5,000 psi
Process Capacity: Pipe Separator
22,000 bpd @ ~67% w-c
3500 m3/d, 22 API

Produced Water: Multistage Centrifugal Injection Pump: 20,000 bwpd pump systems
1.9 MW Motor, DP 3500 psi (245 bar)

Hydrocarbons: Free flows through 6” flowline
Project Award: December 2009
Scope of Work: Subsea Separator Station, Produced Water Processing, Pump, and Controls

» First Application of Pipe Separator
» First Compact Separators for de-oiling and de-sanding
» First injection of produced water for reservoir pressure maintenance above fracture pressure

Courtesy of FMC
Subsea Raw Seawater Injection

CNR: Columba E (Ninian) in operation since 2007, Framo: filtration 80 µm particles, 35 MBPD pump(s) at, 480’ WD, 350 bar DP

Petrobras: Albacora 1300’ WD, 120 MBWD, Framo: filtration 80 µm particles 40 bar DP

Statoil: Tyrihans 900’ WD: Aker strainer and pumps installed at 90 MBPD rate, 150 bar DP
Gas-lift not Gaining Traction

• Flow assurance issues related to gas-lift
 – Formation of asphaltenes, scale, wax or paraffin
 – Undersaturated crudes
• Models are not competent
 – Inadequate for high pressure gas-lift applications
 – Inadequate for dealing with undersaturated crude
• Extremely high intervention cost
 – For subsea wells on the order of $25-$48 MMUSD
• Raises GVF lowering seabed pump efficiency
Gas-lift not Gaining Traction

- Integrity of gas-lift equipment
 - Bellows systems
 - Check systems
 - Packing / elastomers
 - Manufacturing and quality systems
- Vendor R&D funding focused elsewhere
- Users are may not be willing to share the cost of development
Sweet Spot for Gas-lift

• Deep formations beyond seabed
 – Perforations at 15,000 – 25,000 ft below seabed

• Column of fluid weight kills well so in-well lift is critical to economical development
 – Two in-well lift systems have been reviewed
 • Deep set ESPs
 • Gas-lift

• Gas-lift is current leader
 – Technology gap is not as great as for the ESP
Side-pocket Mandrels

- **Materials available for H₂S and CO₂ service**
 - 718, 925, 945, etc

- **Design process**
 - FEA
 - Strain gauge testing
 - Max fiber stress

- **Operating envelope**
 - Minimum failure at least equivalent to the tubing minimum failure
 - Test pressure
 - Working pressure

- **Quality control**
 - Almost aerospace
 - Cost of failure is upwards of $75mmUSD
Flow Control Devices

- Bellows life cycle
 - API 19G2 V1 Bellows life cycle testing is beginning
 - Appropriate sample size
 - No concrete results

- Check system
 - Use the Statoil TR2385 testing requirement
 - Failures reported

- Elastomers or Non-Elastomers
 - Comprehensive design validation testing

- Quality control
 - Almost aerospace
 - Cost of failure is upwards of $50mmUSD
Conclusions

• Gas-lift offers excellent choice:
 – For very deep wells
 – Lower initial cost
 – In-well lift improves total recoverable oil

• Gas-lift obstacles to overcome:
 – Intervention cost
 – Products not proven
 – Historically not for high integrity wells
 – High GVF impacts seabed boosting
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.