Calculating Inflow Performance Relationships for Gas Wells

Dr. Robert W. Chase
Marietta College
Methods for Predicting Gas Well Inflow Performance or Deliverability

- Single-Phase Flow Methods
- Multi-Phase Flow Methods
- Vertical vs. Horizontal Well Configurations
Darcy’s Law

Four-Point Methods
- Conventional Backpressure Test
- Isochronal Test
- Modified Isochronal Test
- Forscheimer/Jones-Blount-Glaze/Houpert /LIT Equation

Single-Point Methods
- Analogy
- Guess
- Dimensionless IPR Methods
Darcy’s Law for Pseudosteady State Flow

• Must know reservoir rock and fluid properties

• Must calculate pseudopressures or approximate them with P^2

\[Q_g = \frac{(0.000703) k_g h (\Psi_r - \Psi_{ws})}{T \left[\ln(x) - \frac{3}{4} + S + DQ_g \right]} \]
Conventional Backpressure Test

- Developed by U.S. Bureau of Mines (1937)
- Requires 4 flow rates maintained to stabilization
Isochronal Test

- Must run 4 flow tests of equal duration
- Shut in well and build up to original reservoir pressure in between each flow test
- Must maintain one point to stabilization

\[Q = C \times \left(P_r^2 - P_{ws}^2 \right)^n \]

 Isochronal Deliverability
Bubba Gump #1

\[y = 0.3432x^{1.7113} \]
Modified Isochronal Test

- Four flow tests separated by shut in periods, all of equal duration
- One flow test must be maintained to stabilization

\[Q = C \times \left(P_r^2 - P_{ws}^2 \right)^n \]
Jones-Blount-Glaze (LIT) Equation

- Just another method of analyzing test data from any 4-point test
- Calculate a & b from equations or empirical method

\[
\Psi_r - \Psi_{ws} = aQ_g^2 + bQ_g
\]

\[
a = \frac{(3.16 \times 10^{-12}) \beta \gamma_g T}{h_p r_w \mu_g}
\]

\[
b = \frac{(1424)T[\ln(0.472x) + S]}{k_s h}
\]

June 4 - 6, 2012

2012 Appalachian Basin Gas Well Deliquification Seminar
Data Needed: one flow test only and shut-in average reservoir pressure

- Plot flow test point and assume n value or a and b values from analogy
- Plot flow test point and assume n = 1
- Use dimensionless IPR methods
The Dimensionless IPR Model

\[\frac{m(P_{wf})}{m(P_R)} = 1 - M^* \left(\frac{Q}{Q_{max@Xe/Xf=1}} \right)^N \]

For \(X_e/X_f < 1E06 \):

\[
\log(M) = 0.004865 + 0.14312 \log(X_e/X_f) - 0.00989 \\
\quad \quad (\log(X_e/X_f))^2 + 0.00039 (\log(X_e/X_f))^3
\]

\[
\log(N) = 0.296498 - 0.0618 \log(X_e/X_f) + 0.00874 \\
\quad \quad (\log(X_e/X_f))^2 - 0.0004278 (\log(X_e/X_f))^3
\]

For \(X_e/X_f > 1E06 \):

\[
\log(M) = 0.0579 \log(X_e/X_f) + 0.3117
\]

\[
\log(N) = -0.0026 \log(X_e/X_f) + 0.1591
\]

Where \(X_e/X_f = 0.37 X_e (e^S)/r_w \) if \(X_e/X_f \) is not known from pressure transient test or if well is not hydraulically fractured.
Comparison of Single and Multi-Point Methods

- Surprisingly good agreement between single-point and multi-point methods

- Better than assuming $n = 1$ in backpressure equation

Figure 3. Dimensionless IPR AOFs and $n=1$ AOFs versus Multi-Point AOFs
Vertical Wells: Multi-Phase Flow Methods for Predicting Gas Well Inflow Performance/Deliverability

- Constant Productivity Index (Linear IPR)
- Darcy’s Law
- Jones-Blount-Glaze/Forscheimer/Houpert/LIT Equation
- Vogel’s Method
- Standing’s Method
- Harrison’s Modification of Standing’s Method
- Klins et al. Method
Constant Productivity Index/Linear IPR

- Flow rate is proportional to pressure drawdown and IPR is linear
- Valid above the bubble point but not below
Darcy’s Law for Pseudosteady State Flow

• Must know reservoir rock and fluid properties

\[Q = \frac{(0.00708) \, kh \, (P_r - P_{ws})}{\mu \, B \, \left[\ln(x) - \frac{3}{4} + S + DQ \right]} \]
Jones-Blount-Glaze Equation

- Can calculate a and b from equations or empirically from JBG plot

\[P_r - P_{ws} = aQ^2 + bQ \]

\[a = \frac{(2.30 \times 10^{-14}) \beta B^2 \rho}{h_p r_w} \]

\[b = \frac{\mu B [\ln(0.472x) + S]}{(0.00708)kh} \]
Vogel’s dimensionless IPR Method

- Vogel’s method developed for solution gas drive reservoirs assumes zero skin factor or flow efficiency equal to one.
- Better than assuming linear IPR but not great

\[
\frac{Q}{Q_{\text{max}}} = 1.0 - 0.2 \left(\frac{P_{\text{wf}}}{P_r} \right) - 0.8 \left(\frac{P_{\text{wf}}}{P_r} \right)^2
\]
Standing’s Dimensionless IPR Method

- Vogel’s equation assumes $FE = 1$

- Standing’s allows for skin or FE

- Must be corrected for $FE > 1.2$ using third equation shown

\[Q' = Q_b + Q_{\text{max}} = PI \times (P_r - P'_{\text{wf}}) \]

\[P'_{\text{wf}} = P_{\text{wf}} + (1 - FE) \left(P_r - P_{\text{wf}} \right) \]

\[\frac{Q}{Q_{\text{max}(FE = 1.0)}} = 1.2 - 0.2 e^{(1.792 P'_{\text{wf}}/P_r)} \]
Klins et al Method

- Accounts for skin factor
- Accounts for bubble point

\[
\frac{q_o}{(q_o)_{\text{max}}} = M \left[1 - 0.295 \left(\frac{p_{wf}}{p_r} \right) - 0.705 \left(\frac{p_{wf}}{p_r} \right)^n \right]
\]

...\(M = \frac{6.835}{(6.835 + s)}\)

...\(n = 1.235 + 0.72 \frac{p_r}{p_b} (1.235 + 0.001 p_b)\)
Retnanto-Economides Horizontal Well IPR Model

\[
\frac{q_o}{q_{\text{max}}} = 1 - 0.25 \left(\frac{p_{\text{wf}}}{p_r} \right) - 0.75 \left(\frac{p_{\text{wf}}}{p_r} \right)^n
\]

where...

\[
n = \left(-0.27 + 1.46 \left(\frac{p_r}{p_b} \right) - 0.96 \left(\frac{p_r}{p_b} \right)^2 \right) \left(4 + 0.00166 p_b \right)
\]

\[
q_{\text{max}} = \frac{J p_r}{0.25 + 0.75n}
\]

\[
J = \frac{2 \sqrt{k_h k_v X_e}}{887.22 B_o \mu_o \left(p_D + \frac{X_e}{2 \pi L} s \right)}
\]

\[
p_D = \frac{X_e C_H}{4 \pi h} + \frac{X_e}{2 \pi L} s_x
\]

\[
s_x = \ln \left(\frac{h}{2 \pi r_w} \right) - \frac{h}{6 L}
\]

• Only single flow test required

• Wellbore configuration required
CONCLUSIONS

• Numerous methods are available to predict the IPR of a gas well

• Selection of method depends on well configuration (vertical or horizontal); phases flowing (single or multiple); and reservoir rock and fluid properties

• The accuracy of the resulting IPR is a function of the method chosen to calculate it

• Future IPR curves, although not discussed in this presentation, are easy to construct
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.