Plunger Lift Applications for Horizontal Wells

Kevin Brady – Multi Products Company
Outline

• Plunger lift background
• Horizontal well challenges
• Applications in the Marcellus Shale
• Newly-designed tubing plungers
• Casing plungers
• Future of horizontal plunger lift
Trends in Horizontal Wells by Rig Activity

Source: Drilling Contractor, Mar 2011
Well Types in Pennsylvania

Source: U.S. Energy Information Administration
Plunger Lift Background

• Plunger falls by gravity to the bottom of the well
• Plunger provides solid interface between gas heavier liquids
• Utilizes reservoir energy to lift plunger
• Fluid column lifted to surface
Horizontal Well Challenges

- Decreasing plunger fall velocity as well deviation increases
- Liquids slugging in and out of tubing
- Plunger type required for maximum fall
- The need to conduct well control operations
APPLICATIONS IN THE MARCELLUS SHALE

Based on SPE 147225
Typical Horizontal Well Schematic

- End of tubing (EOT) set at high inclination – between 50° and 70°
- X-profile nipple set at 10°– 20°
- XN – profile nipple set at EOT
- Standing valve seated in the XN nipple
Testing Program

- Experiment with plunger types
 - One plunger system
 - Dual plunger, tandem system
- Measure and determine fall velocities
- Determine fall depths and max inclination
- Demonstrate successful travel through X-nipple
- 7 test wells, 53 individual tests performed

TWM Analysis from Echometer Company
Findings – Plunger Types

- Must pass through X-nipple and maintain sufficient seal

- Short plunger selected
 - Run in tandem to increase likelihood of passing through X-nipple (impact of top plunger forces both through)
 - Smaller plunger believed to increase fall velocity, thereby increasing fall depth

- Collapsible spring-loaded pads
Findings – Fall Velocities

- Velocities increased past kick-off point
 - Drag force from gas flow decreases as inclination increases
 - Plunger now rests on low side of tubing and is not centralized in the wellbore
 - Testing shows drag reduction of 29% at KOP

<table>
<thead>
<tr>
<th>MD, ft</th>
<th>Inc, °</th>
<th>Velocity, ft/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>5723</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5749-KOP</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5785</td>
<td>0.6</td>
<td>140</td>
</tr>
<tr>
<td>5817</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>5848</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5880</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>5912</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>5944</td>
<td>14.4</td>
<td>279</td>
</tr>
<tr>
<td>5975</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>6007</td>
<td>17.6</td>
<td></td>
</tr>
</tbody>
</table>
Findings – Fall Depths and Max Inclination

- Plunger decelerates to KOP, accelerates after KOP
- Velocity trend extrapolated to determine max fall depth
- Modeled to fall within 20 ft. TVD of perforations
Conclusions From Marcellus Tests

- Test wells show fall potential to 74°
- In all cases, plungers were still moving to the XN nipple at EOT.
- Models show potential of plungers to fall within 20 ft. TVD of the perforations
- High potential of plungers to fall closer to 90° if tubing set depths were adjusted.
NEW DESIGN FOR TUBING PLUNGERS
JackRabbit Plunger

- Continuous flow-through design
 - Does not require wells to be shut in
 - Avoids production interruptions
- Increased fall velocity
- Spring-loaded pads to pass through X-nipple
JackRabbit Test Well #1
JackRabbit Test Well #2
CASING PLUNGERS
System Benefits

• No tubing required

• No shut in time, 24/7 operating time

• Minimal loss of production when plunger is traveling

• Applications for vertical and horizontal wells
Plunger Design

• Positive seal with rubber cups – designed for vertical and low deviations, up to 40°

• Brush type – designed for high deviations/horizontal applications (has been tested to 60°)
System Specifics

• Lubricator
 – Hammer unions/swing system for replacing plunger
 – Automatic trap required to hold and release plunger
 – Two outlets required
 – 1) sales
 – 2) high flow

• PetroCasing algorithm design
Casing Plunger Candidates

• Marginal or depleted well
• Shows capability to produce under it’s own well pressure
• Casing pressure is greater than line pressure
 – 33 psi above line pressure required to lift one bbl/fluid – 4 ½ in. casing (compared to 74 psi for 2 7/8 in. and 108 psi for 2 3/8 in. tubing)
• No sand or salt production
Casing Plunger Experience in Horizontal Wells

- Approximately 30 systems in operation
 - West Virginia, Kentucky and Tennessee
 - All low volume/low pressure applications
 - Wells average 2 yrs of production before casing plunger is applied

- Typically installed with a series of standing valves to stage fluid up the hole
 - Improves fluid removal

- Plunger runs to first standing valve – around 40° depending on well profile and KOP.
FUTURE OF HORIZONTAL PLUNGER LIFT
What Are The Next Steps?

- Tests show potential of plungers to fall to higher inclinations than expected
- Plunger designs continue to evolve that increase fall velocity, inclination reached, and MD obtained.
- Use of standing valves is beneficial to improve fluid recovery
- Tubing programs can be modified as plunger performance improves
- Casing plungers are good options for some wells
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.