Reserves Management:
A Concerted Effort

Efren Munoz, Staff Reservoir Engineer
ConocoPhillips
Introduction

• Proposed Workflow
• Importance of “b” in DCA (Decline Curve Analysis)
• DCA used to evaluate & book reserves
• “b” used for:
 – Well performance evaluation
 – Decline curve analysis
 – Reserves evaluation
 – Identification of Layered-no-crossflow

• Decline Curve Analysis - DCA:
 – Graphical method to analyze production decline
 – Used also to forecast future performance of oil and gas wells

\[q = \frac{q_i}{(1 + bD_i t)^{\frac{1}{b}}} \]
“4 in 1” plot

- Method proposed by Fetkovich in 1990 to visualize not only well performance, but also mechanical/operational effects. Consists of:
 - Log (Qg) vs. time (semi-log, understand operational changes)
 - P/Z vs. Cum.Prod (cartesian, material balance)
 - Log (Qg) vs. Log (Dt) (flow regime analysis)
 - Deliverability plot, Log (DP^2) vs. Log (Qg)
Workflow

Lease Review DB
- Production data
- Well Schematics
- Comments from previous Lease Reviews

Reserves DB
- Production data
- Reserve Type
- Reserves and forecast
- Decline Curve Analysis

Evaluate logs
- Number of completions
- Volumetrics

Generate 4 in 1 plot
- Evaluate slopes
- Generate b factor

P/Z vs. Gp review
- Validate extrapolation
- Interpret shape

Review logs and completion
- Homogeneous layer?
- Hydraulically Fractured?

Update DB’s
- Lease Review & Reserves
- Perform Economics
- Feedback to Operations & LRP
- Prepare Documentation

Is “b” realistic for the actual completion?
- NO
- Y

Update “b” and re-do Decline Curve Analysis

Gather and validate Economic Parameters
• Hyperbolic decline, “b” should be:
 – $0 < b < 0.5$, for single layer completions
 – $0.5 < b < 1$, for multi-layer completions

• Possible actions after evaluating “b”:
 – Completion limited: Frac or re-frac candidate
 – Difficult to define due to liquid loading: candidate for artificial lift
 – Differential depletion: evaluate different completion strategies
Typical “4 in 1” plot

Understand the production history

Transient

Slope “n”

b=(2n-1)/2n

Extrapolation shows OGIP
Example 1 (4 in 1)

Homogeneous?

Smooth history

Slope=-1/2 (transient)

Slope=-1 (depletion)

n=1.0

b=0.5
Example 1 (completion)

Example 1, Wellbore schematic and Logs
Example 1 (Fetkovich)

Remaining resource 650 MMcf using Fetkovich Type-curve

Example 1 (Fetkovich)

Gas Rate (Dimensionless) vs. Time (Dimensionless)

- b=0
- b=0.5
- b=1

Working Forecast Parameters
Phase: Gas
Case Name: Remedial
b: 0.494943
Di: 0 A.n.
qi: 110.9 Mcf/d
ti: 07/31/2010
te: 04/30/2048
Final Rate: 19.9522 Mcf/d
Cum. Prod.: 4126.49 MMcf
Cum. Date: 07/31/2010
Reserves: 649.375 MMcf
Reserves Date: 04/30/2048
EUR: 4775.86 MMcf
Forecast Ended By: Rate
Initial Date: 07/31/1999
DB Forecast Date: 08/02/2010
Example 1 (Hyperbolic Decline)

Remaining reserves 642 MMcf using Hyperbolic decline with b=0.5

<table>
<thead>
<tr>
<th>Working Forecast</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Gas</td>
</tr>
<tr>
<td>Case Name</td>
<td>Remedial</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
</tr>
<tr>
<td>Di</td>
<td>0.07422 A.n.</td>
</tr>
<tr>
<td>qi</td>
<td>112.706 Mcf/d</td>
</tr>
<tr>
<td>ti</td>
<td>07/31/2010</td>
</tr>
<tr>
<td>te</td>
<td>08/31/2047</td>
</tr>
<tr>
<td>Final Rate</td>
<td>19.9611 Mcf/d</td>
</tr>
<tr>
<td>Cum. Prod.</td>
<td>4126.49 MMcf</td>
</tr>
<tr>
<td>Cum. Date</td>
<td>07/31/2010</td>
</tr>
<tr>
<td>Reserves</td>
<td>642.457 MMcf</td>
</tr>
<tr>
<td>Reserves Date</td>
<td>08/31/2047</td>
</tr>
<tr>
<td>EUR</td>
<td>4768.95 MMcf</td>
</tr>
<tr>
<td>Forecast Ended By</td>
<td>Rate</td>
</tr>
<tr>
<td>DB Forecast Date</td>
<td>09/02/2010</td>
</tr>
</tbody>
</table>

Current Gas Cum. : 4126.5 MMcf
Example 2 (4 in 1)

- **Date**: Represents the timeline for the gas production data.
- **Gas Rate (Cal. Day) (Mcf/d)**: The gas rate data is plotted on a logarithmic scale.
- **(DeltaP)^2**: The square of the pressure drop is also plotted.
- **P/Z**: The ratio of pressure to the compressibility factor is shown.
- **Days Since 1st Prod (Mdays)**: Indicates the time since the initial production.
- **Cum. Gas at Test (MMcf)**: Cumulative gas production data.
- **Gas per Day (Mcf/d)**: Daily gas production rate.
- **Slope=-1**: Indicates a linear relationship with a slope of -1, typical for depletion cases.
- **n=1**: The exponent n is set to 1 for certain calculations.
- **b=0.5**: The exponent b is set to 0.5 for others.

The graphs illustrate the decline in gas rate over time, with a focus on high-pressure line behavior and the calculation of depletion slopes.
Example 2 (completion)

Wellbore schematic

Sand in wellbore

Example 2 Wellbore schematic
Example 2 (Fetkovich)

Remaining resource 3.8 Bcf using Fetkovich Type-curve
Example 2 (Hyperbolic Decline)

Remaining reserves 3.7 Bcf using Hyperbolic decline with b=0.5

Working Forecast Parameters
Phase : Gas
Case Name : MWD
b : 0.5
Di : 0.0576698 A.n.
qi : 631.613 Mcf/d
ti : 07/31/2010
te : 06/30/2040
Final Rate : 182.051 Mcf/d
Cum. Prod. : 27537.5 MMcf
Cum. Date : 07/31/2010
Reserves : 3705.3 MMcf
Reserves Date : 06/30/2040
EUR : 31242.8 MMcf
Forecast Ended By : Time
DB Forecast Date : 09/02/2010

Current Gas Cum. : 27537.5 MMcf
Example 3 (completion)

Des: Breakdown Test, Depth (MD): 8,104-8,360, Date: 1/16/2003, Com: 2475 SITP. MIRU Halliburton Services frac equipment & test treating line to 10044 psi & set pop-off at 8559 psi, test ann. line to 4000 psi & set pop-offs at 2520 & 2525 psi. Break down the Lobo 6 zone from 8104.121, 8176.186, 8246-263, 8352-360 w/ 2% KCL water at 5 bpm at 2749 psi, load well w/ 141 bbls. SLP at 1279 psi, W/ .592 psi/ft FG. Leak-off first 5 mins= 131 psi/min, 10 mins= 65 psi/min, 15 mins= 44 psi/min, 30 mins= 23 psi/min, SI w/ 620 psi. Load ball injector w/ 70-7/8" Bio-Balls and open well at 620 psi. Run ball-job at 12.5 bpm and ball-out to 4301 psi w/ good break backs. Pumped 344 bbls clean fluids w/ avg. pump rate of 12 bpm, avg. pump pressure at 1919 psi. RDMO frac equipment.

Des: FILL, OD:4, Depth (MD): 8,619-8,700, Date: 2/25/2009
Des: CTCO 9/22/06, OD:4, Depth (MD): 8,699-8,700, Date: 9/22/2006

Production, 4 1/2, 3.920, 22, 6,771.9, 12/17/2002
Example 3 (Prod.Logs)

Production logs show how the contribution from different intervals changed with time, this is a good example of "differential depletion", depletion in the lower intervals allowed the upper zones to increase production.

<table>
<thead>
<tr>
<th>Perf.Interval (ft)</th>
<th>2003</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas (%)</td>
<td>Gas (mcsfd)</td>
</tr>
<tr>
<td>8104-8121</td>
<td>4.1</td>
<td>25 (mcsfd)</td>
</tr>
<tr>
<td>8178-8188</td>
<td>4.9</td>
<td>30 (mcsfd)</td>
</tr>
<tr>
<td>8246-8263</td>
<td>65.5</td>
<td>397 (mcsfd)</td>
</tr>
<tr>
<td>8350-8360</td>
<td>25.5</td>
<td>153 (mcsfd)</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>605 (mcsfd)</td>
</tr>
</tbody>
</table>
Example 3 (4 in 1)

Slope = $-\frac{1}{4}$ (transient)

More than one zone?

$n = 1.35$

$b = 0.62$
Example 3 (Fetkovich)

Flat portion indicates no stimulation

Remaining Reserves = 1.96 Bcf
Example 3 (Hyperbolic Decline)

Remaining Reserves = 1.93 Bcf
Example-4 (frac candidate, no depletion flow in the Log-Log plot)

(Slope=$-\frac{1}{4}$)

(Slope=$-\frac{1}{2}$)

Transient flow only

$n=4$

$b=0.5$
Fetkovich Analysis Plot (actual data showing no stimulation)

Actual data (red) flat at the beginning showing no stimulation.
Example 4 (Frac Candidate)

Proposed rate uplift = 500 mcf/d, incremental reserves approx. 1 Bcf
Example 4 (Results)

Stabilized production @ 830 mcf/d after hydraulic fracture job
Example 5 (Holes in tubing)

Slope = -1/2, transient

Operation/Mechanical?
Example 5 (Results)

New tubing, optimizing plunger lift at this point in time
Example 6 (Capstring installation)

- $n = 0.7$
- $b = 0.3$

Slope = -1
Example 6 (Lower perfs uncovered)

<table>
<thead>
<tr>
<th>ftKB (MD)</th>
<th>Schematic - Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5,090</td>
<td></td>
</tr>
<tr>
<td>7,408</td>
<td></td>
</tr>
<tr>
<td>9,771</td>
<td></td>
</tr>
<tr>
<td>9,804</td>
<td></td>
</tr>
<tr>
<td>9,805</td>
<td></td>
</tr>
<tr>
<td>9,807</td>
<td></td>
</tr>
<tr>
<td>9,811</td>
<td></td>
</tr>
<tr>
<td>9,819</td>
<td></td>
</tr>
<tr>
<td>9,826</td>
<td></td>
</tr>
<tr>
<td>9,827</td>
<td></td>
</tr>
<tr>
<td>9,851</td>
<td></td>
</tr>
<tr>
<td>9,911</td>
<td></td>
</tr>
<tr>
<td>9,919</td>
<td></td>
</tr>
<tr>
<td>9,922</td>
<td></td>
</tr>
<tr>
<td>10,038</td>
<td></td>
</tr>
<tr>
<td>10,800</td>
<td></td>
</tr>
<tr>
<td>10,824</td>
<td></td>
</tr>
<tr>
<td>10,994</td>
<td></td>
</tr>
<tr>
<td>11,075</td>
<td></td>
</tr>
</tbody>
</table>

Jet Perforation, 9,900-9,922, 1/22/1994, 3 SPF, 9 SHOTS, 90 DEG. SPIRAL PHASING

Jet Perforation, 9,985-10,038, 1/22/1994, ESTIMATED DATE ENTERED

Jet Perforation, 10,800-10,826, 1/8/1994, 2 SPF 53 SHOTS 90 DEG. SPIRAL PHASING

Jet Perforation, 10,994-11,000, 1/8/1994, ESTIMATED DATE ENTERED

Fracture, Depth (MD) 10,900-9,822, 1/22/1994, Com. (SF) SPF FAC'D W/COD W/144, 080 guns gal & 384,000 lbs. + (-) SF 5/244, 020 lbs. 20 lbs.

Des. 1/22/1994, 11,075, prod. casing, 1/12/1994, 9,11, 200's, 12,25/93
Example 6 (Results)

Optimizing chemical injection
Summary

• Consistent and common approach across disciplines

• This is a way to identify remedial candidates to maintain base production

• It is also a way to identify opportunities for long term planning

• Evaluation of production optimization practices

• Evaluation of completion strategy
Conclusions

• Proposed Workflow
 – Successful and consistent evaluation approach

• Importance of “b” in DCA
 – Forces the engineer to consider operational/mechanical influences on forecast

• DCA used to evaluate & book reserves
 – Limits subjectivity in the analysis

• “b” used for:
 – Well performance evaluation
 – Decline curve analysis
 – Reserves evaluation
 – Identification of layered no-crossflow effects
Thank you!
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.