Use of Foamer to Deliquify Natural Gas Wells with Dry-gas-lift System

Fenfen Huang, Duy Nguyen, Adam Rowe
Nalco Company, Energy Services
Outline

• Background
• Developed foamer chemistry using DOE: synergism of mixed surfactants
• Test methods utilized to develop dry-gas-lift (DGL) foamer in the lab
 — Sci-Foam EC7018A
• Field performance data of EC7018A
 — On DGL well
 — On well without DGL
• Conclusions
Background

- Customer used very dry gas in the gas lift mandrel to mechanically unload liquid from natural gas wells
- A large amount of incumbent foamer was used to solve the loading problem
- The solvent in the conventional chemical foamers flashed off easily when injected through the gas-lift mandrel
- Conventional foamer “gunked” in the system and plugged the mandrel, resulting operational cost
Mixture Design Techniques
(Four components)

% Unloading = 36.8 X_A + 45.4 X_B + 8.4 X_C - 83.6 X_D
+ 152.7 X_A X_B + 22.0 X_A X_C - 38.1 X_A X_D
+ 182 X_B X_C + 274.4 X_B X_D + 62.1 X_C X_D
- 637.2 X_A X_B X_D - 810.3 X_A X_C X_D

Where:
X: weight percentage of component;
A = betaine ; B = anionic surfactant;
C = EGMBE ; D = cationic corrosion inhibitor

TYPICAL MOLECULAR INTERACTION PARAMETERS (β)

<table>
<thead>
<tr>
<th></th>
<th>ANIONIC</th>
<th>NONIONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIONIC</td>
<td>0 TO -1</td>
<td>-1 TO -5</td>
</tr>
<tr>
<td>NONIONIC</td>
<td>-1 TO -5</td>
<td>< -1</td>
</tr>
<tr>
<td>AMPHOTERIC</td>
<td>-5 TO -15</td>
<td>< -1</td>
</tr>
<tr>
<td>CATIONIC</td>
<td>-15 TO -25</td>
<td>-1 TO -5</td>
</tr>
</tbody>
</table>
Anionic Surfactant in Mixed Micelle

Mole fraction of anionic surfactant in mixed solutions

Non-Ideal $\beta = 0$

Ideal

Actual data $\beta = -3.0$

Mole fraction of anionic surfactant in mixed micelle

Mole fraction of anionic surfactant in mixed solutions
CMC of Mixed Solutions

- Non-Ideal
- Ideal

β = 0
β = -3.0

Actual data

Mole fraction of anionic surfactant in mixed solutions

CMC (mole/l)

0 0.2 0.4 0.6 0.8 1

Mole fraction of anionic surfactant in mixed solutions

Feb. 27 - Mar. 2, 2011
Test Methods Used to Develop & Validate DGL Foamer /CI/SI EC7018A

- “Gunking” test
- Dynamic foaming test
- Cold temperature stability
- Field trial
- Continuous injection
“Gunking” Test

• The bench top Rotary-Evaporator test

• Test temperature 115ºC / 240 ºF

• Weight loss calculated

• Sample residue visually inspected for solid, precipitation after test (both hot and cooled)

Reference: Cole-Parmer Rotary Evaporator Systems
Gunking Test Residuals (Cooled)

DGL foamer 1

DGL foamer 2

DGL EC7018A

Clear liquid
Dynamic Foaming Performance Test (DFP) - Nalco Deliquification Unloading Rig
DFP Test Results in Water and Brine

- Brine: 3.85% NaCl, 0.55% CaCl2·2H2O
- Tap water
 - DGL Foamer 2
 - 400ppm active foamer

![Bar chart](chart.png)

- In tap water: 73.81%, 62.69%, 61.43%, 30.40%, 70.02%
- In synthetic brine: 77.00%, 78.92%, 71.32%, 80.21%, 69.26%

- 400ppm active foamer
- Brine: 3.85% NaCl, 0.55% CaCl2·2H2O
DFP Test Results in Brine and Field Condensate

Liquid Unloading Efficiency in Brine + 20% Condensate

% Unloading by W.T.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

DGL Foamer 1 DGL Foamer 2 EC7018A

2.89% 26.78% 45.92%
Cold Temperature Stability Test

<table>
<thead>
<tr>
<th>Foamer</th>
<th>Winterization test @ -30 °C</th>
<th>Winterization test @ -45 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional foamer 1</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>Conventional foamer 2</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>DGL foamer 1</td>
<td>Failed: cloudy liquid with a small amount of solid</td>
<td>Failed: ice cube</td>
</tr>
<tr>
<td>DGL foamer 2</td>
<td>Passed: clear liquid</td>
<td>Passed: clear liquid</td>
</tr>
<tr>
<td>EC7018A</td>
<td>Passed: clear liquid</td>
<td>Passed: clear liquid</td>
</tr>
</tbody>
</table>
Test Summary of DGL Foamers

<table>
<thead>
<tr>
<th>Foamer</th>
<th>Gunking test 115°C/240°F</th>
<th>Winterization - 30°C</th>
<th>DFT % unloading by w.t *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tap water</td>
</tr>
<tr>
<td>EC7018A</td>
<td>Pass</td>
<td>Pass</td>
<td>70.0</td>
</tr>
<tr>
<td>DGL foamer 1</td>
<td>Fail</td>
<td>Fail</td>
<td>73.8</td>
</tr>
<tr>
<td>DGL foamer 2</td>
<td>Fail</td>
<td>Pass</td>
<td>62.9</td>
</tr>
</tbody>
</table>

* 400ppm foamer active
** Brine 3.85% NaCl, 0.55% CaCl2.2H2O
¶ Condensate sample from the well
Taking the Technology to the Field
Dry-gas-lift Well Diagram

<table>
<thead>
<tr>
<th>Gas:</th>
<th>Mole Percent</th>
<th>GAL per 1000 Cu Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON DIOXIDE</td>
<td>0.125%</td>
<td></td>
</tr>
<tr>
<td>NITROGEN</td>
<td>6.978%</td>
<td></td>
</tr>
<tr>
<td>OXYGEN</td>
<td>0.025%</td>
<td></td>
</tr>
<tr>
<td>METHANE</td>
<td>85.351%</td>
<td></td>
</tr>
<tr>
<td>ETHANE</td>
<td>4.299%</td>
<td>1.149</td>
</tr>
<tr>
<td>PROPANE</td>
<td>1.644%</td>
<td>0.453</td>
</tr>
<tr>
<td>ISOBUTANE</td>
<td>0.338%</td>
<td>0.111</td>
</tr>
<tr>
<td>BUTANE</td>
<td>0.456%</td>
<td>0.144</td>
</tr>
<tr>
<td>ISOPENTANE</td>
<td>0.162%</td>
<td>0.059</td>
</tr>
<tr>
<td>PENTANE</td>
<td>0.143%</td>
<td>0.052</td>
</tr>
<tr>
<td>HEXANES</td>
<td>0.252%</td>
<td>0.104</td>
</tr>
<tr>
<td>HEPTANES</td>
<td>0.169%</td>
<td>0.078</td>
</tr>
<tr>
<td>OCTANES</td>
<td>0.045%</td>
<td>0.023</td>
</tr>
<tr>
<td>NONANES</td>
<td>0.010%</td>
<td>0.006</td>
</tr>
<tr>
<td>DECANES PLUS</td>
<td>0.003%</td>
<td>0.002</td>
</tr>
<tr>
<td>Total</td>
<td>100.000%</td>
<td>2.181 C2+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.032 C3+</td>
</tr>
<tr>
<td>HEXANES PLUS</td>
<td>0.479%</td>
<td>0.213 C6+</td>
</tr>
</tbody>
</table>
Field Performance

- Used conventional foamers
- Started EC7018A injection
- Trialed conventional foamer
- Switched back to EC7018A
- Water slugs
- Stabilized water production
How about Topside?
Field Performance — Fluid Separation on the Surface
Field Performance — Water Quality

Right after pulling off flow line

2 minutes after sampling
Field Performance — Water Quality

• Foam collapsed quickly and left good quality water behind

• Clear water to be re-injected via disposal well

• No top side upset due to the use of Sci-Foam EC7018A
Conventional Well: Three-Month Trend

Start Soap Injection
Rate $14.1 \times 10^3 \text{ m}^3/\text{d}$

Declining Casing Pressure

With Soap Performance
Continuous production for 7 weeks at high rate.
Estimated up-lift: $5 \times 10^3 \text{ m}^3/\text{d}$
On-time increased from 50 to 100%

Forward Plan
Reduce soap injection rate
Conclusions

• Utilized DOE* and studied the synergy of surfactant mixtures

• Designed test methods to develop DGL foamer EC7018A in the lab

• Validated the efficiency of EC7018A by successful field trial and continuous injection

• Use of EC7018A boosted gas production without upsetting the gas mandrel and the topside separation

• Sci-Foam, when used in a conventional gas well, maximized the gas production as well

Acknowledgements

Rich Ferrin

Thomas Weathers

Nalco

SciFoam, Nalco and the logo are trademarks of Nalco Company.
All other trademarks are the property of their respective owners.
Questions or comments?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.