Dewatering Remote Alberta Coal Bed Methane Wells Using Solar Powered Crank Rod Pumps

Ron Peterson
Unico® Oil & Gas Division
Background

- Coal Bed Methane (CBM) wells in Alberta
- Well depths vary from 300 to 800 meters
- Low volume dewatering required to hit target gas flow rates
- Well-sites are often remote
- Access is limited by weather conditions
- Electrical service not available
Dewatering CBM Wells by Swabbing

- Wells are dewatered by means of periodic swabbing operations
- Swabbing entails deployment of mobile swabbing rigs to manually pull liquid from the wells
- Water volume during swabbing is roughly 3 barrels per week
Alternative Dewatering Method Sought

- Producer sought a reliable, lower cost, low maintenance alternative to swabbing
Alternative Dewatering Method Sought

- Producer sought a reliable, lower cost, low maintenance alternative to swabbing

One option is solar-powered rod pumping during daylight hours
Evaluate Solar Power

- Analyze historic solar irradiance intensity near Edmonton, Watts/m²
- Determine number of solar panels required to hit liquid production goal based on historic radiance
- Determine effect of daytime-only operation on well flowing pressure and gas flow rate
Investigate Alternatives to Solar Power

- Financial analysis of propane and natural gas (genset operation)
- Lifetime cost of solar power is compellingly low

Financial Analysis Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Inflation Rate (%)</td>
<td>Ki</td>
<td>3.00%</td>
</tr>
<tr>
<td>Required Discount Rate (%)</td>
<td>Kd</td>
<td>8.00%</td>
</tr>
<tr>
<td>Expected System Life (Years)</td>
<td>Kp</td>
<td>15.0</td>
</tr>
<tr>
<td>Present Value Factor (Years)</td>
<td>Kn</td>
<td>10.5</td>
</tr>
<tr>
<td>Natural Gas Net Present Value</td>
<td>Cgp</td>
<td>$75,958</td>
</tr>
<tr>
<td>Solar Power Net Present Value</td>
<td>Csp</td>
<td>$3,898</td>
</tr>
<tr>
<td>Electric Power Net Present Value</td>
<td>Cep</td>
<td>$12,469</td>
</tr>
</tbody>
</table>
Pumping Equipment Selection

- Desktop simulation of pumping system to determine pumping equipment requirements. Assume steel rods:
 - 12 inch pump stroke, 12 SPM
 - 1.25 inch down-hole sucker pump
 - 5/8 or 3/4 inch steel sucker rods (depending upon well depth)
 - Peak liquid production rate ~20 BPD (mid-day)
 - Crank Rod Pump

Predicted Results
Well Data

<table>
<thead>
<tr>
<th>Field</th>
<th>CBM Near Edmonton, Alberta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Depths</td>
<td>300 to 800 meters</td>
</tr>
<tr>
<td>Plunger Diameter</td>
<td>1.25 inches</td>
</tr>
<tr>
<td>Rod Diameter</td>
<td>0.625 or 0.75 inches Steel</td>
</tr>
<tr>
<td>Tubing Size</td>
<td>2.375 inches</td>
</tr>
<tr>
<td>Casing Size</td>
<td>4.5 inches</td>
</tr>
<tr>
<td>Tubing Pressure</td>
<td>50 psi</td>
</tr>
<tr>
<td>Casing Pressure</td>
<td>50 psi</td>
</tr>
<tr>
<td>Target Gas Flow</td>
<td>~1,000 – 10,000 m^3/day Range</td>
</tr>
<tr>
<td>Target Liquid Flow</td>
<td>1 – 3 BPD With Solar Pump</td>
</tr>
</tbody>
</table>
Surface Pumping Unit

- Small, wellhead mounted CRP® pumping unit
- Crank driven
- 12 inch stroke length
- Direct drive
- Nema 1 enclosure
Example Pumping Unit Installations
Solar Power

- Power is supplied by photo voltaic solar panels
- 5 – 8 dedicated, series connected 170 Watt solar panels per well (exact number of panels depends upon pump depth)
- Daytime operation only
- No battery storage for nighttime operation
- Panel angle is assumed to be fixed for winter operation: approximately latitude +15 degrees
Solar Panel Array
Solar Panel Array
Drive and Controller

- Pumping unit is controlled by inverter drive with Embedded well controls
Controls

- Controller manages solar power and regulates pump speed to maintain pump fill and control pump-off
- Embedded power management controller coupled with mechanical rotary inertia energy storage allow continuous “motoring” power draw from solar panels, maximally utilizing power available from the panels – maximize production with no wasted power
- Solar panels “see” constant power draw rather than cyclic power peaks, thereby greatly reducing the number of solar panels required
Constant Power Draw

- Cyclic power peaks are eliminated in favor of speed modulation with transference of power in/out of rotary inertia
- Hybrid energy storage
Response to Variable Irradiance

- Pump torque is continuously adjusted to maximize power draw (pumping speed) for the given irradiance (brightness), Watts/m²

- As irradiance changes (for example, if a cloud passes over), the pump will rapidly adjust speed, thus continually maximizing production while also preventing the solar panel from “crashing”
Solar Panel Peak Power Point

• MPPT “maximum peak power point tracking” algorithm continuously adjusts operating voltage to maintain maximum power draw as solar panel characteristics change – especially temperature
Remote Telemetry and Data Collection

- Diagnostic Data are collected remotely via cell phone modems
- Data are stored on web-accessible system
- Data include such things as surface & down-hole dynamometer plots, estimated liquid production rate, Well Reports, etc.
- To improve reliability and robustness, all data, including surface and down-hole dynamometer plots, are collected without the use of any external sensors
Results

- Liquid production increased from ~3 barrels/week to ~2 BPD
- Liquid production peaking at approximately 25 BPD (instantaneous) at 13 SPM
- Gas production increased and stabilized
Gas Production of Representative Well

- **Gas Flow, E3m3**
- **Periodic Swabbing**
- **Install Solar Pump**

Graph Details:
- **Individual Wells**
- Created: 10/19/2010 7:29:12 AM
- **Facility:** 06/06-33-04
- **Start:** 1/1/2010
- **End:** 10/18/2010

Graph shows gas production and pressure changes over time.
Example Daily Parameter Trend

- **Motor Power**: 0.47 hp
- **Solar Current**: 0.22 amps
- **Solar Power**: 52.92 watts
- **Solar Voltage**: 230.09 volts
- **Pump Speed**: 0.00 spm
- **Pump Fill**: 100%
- **Pump Flow**: 0 bpd

Trend Peaks:
- **Solar Power (Peak 1100 Watts)**
- **Pumping Speed (Peak 14 SPM)**
- **Pump Fill**
- **Production Rate (Peak 25 BPD)**

- **Sunrise**
- **Sunset**
30 Day Parameter Trend

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>High</th>
<th>Low</th>
<th>Avg</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Power</td>
<td>hp</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Current</td>
<td>amps</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Power</td>
<td>watts</td>
<td>36.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Voltage</td>
<td>volts</td>
<td>78.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Speed</td>
<td>rpm</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Fill</td>
<td>%</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak Parameter: 14 SPM
90 Day Parameter Trend
1 Year Parameter Trend

Parameter Trends

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>High</th>
<th>Low</th>
<th>Avg</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Power</td>
<td>hp</td>
<td>5.00</td>
<td>-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Current</td>
<td>amps</td>
<td>5.00</td>
<td>-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Power</td>
<td>watts</td>
<td>1,000</td>
<td>250</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Solar Voltage</td>
<td>volts</td>
<td>300</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Pump Speed</td>
<td>spm</td>
<td>200</td>
<td>-10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pump Fill</td>
<td>%</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Feb. 27 - Mar. 2, 2011
90 Day Daily “Gauge” Trend

Gauge Trends

- **Gauge Run Time**
 - 05.39 hh.mm
 - high: 08.05
 - low: 00
 - avg: 03.03
 - range: 08.05

- **Gauge Fluid Production**
 - 02 bbl
 - high: 04
 - low: 00
 - avg: 01.02
 - range: 04

- **Gauge Average Fill**
 - 98%
 - high: 99
 - low: 00
 - avg: 80.12
 - range: 99

- **Gauge Average SPM**
 - 08.88 spm
 - high: 12.25
 - low: 00
 - avg: 07.94
 - range: 12.25
Dynamometer Diagnostic Trends

- Down-hole Dynamometer used for pump speed control
- No externally mounted sensors required
Next Generation Pumping Unit
Thank You – Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.