Successful Auto Gaslift Implementation in PDO

Chandran Peringod, Sharifa Ruheili, Mosleh Khalil & Zeljko Kerecin
Petroleum Development Oman.
Outline

- Background & business case
- Auto Gaslift Technology
- Field Implementation
- Results & discussion
- Future work
- References
Background

- ‘B’ field is already developed with gas recycling.
- Around 40 wells drilled with 4 injectors
- Many surprises after drilling – Sand development, Channel connectivity, sand continuity, orientation, faults……
- 300 bar compressor and 4 gas injectors to inject 3 MM m3/d gas into two reservoirs
- Eventual gas blow down by 2Q 2012
- Reservoir studies indicated no artificial lift requirement for this field
- Few wells abandoned due to poor sand development
‘B’ Field
‘B’ Field
Field Production

- Average oil rate 60-70 m³/d with some wells 150 m³/d
- Around 20 wells main contributors
- GOR ranging from 40-2000 m³/m³
- Many wells dying due to depletion, gassing out due to recycling – major production challenge
- High CO₂ in the gas calling in for duplex SS pipelines
- Gaslift would require extensive pipeline network at high cost and not planned
Gaslift is the ideal mode of lift for this field (high GOR, fluctuating rates..)

Auto gaslift was proposed as an innovative alternate to conventional gaslift

Gas pressure in the reservoir being maintained by gas injection

Completions can be re-used elsewhere

Installation relatively simple

Cost effective ($400 K + hoist cost for recompletion)

6 wells identified
Auto Gaslift concept
Challenges

- Auto gaslift was never done in PDO
- Very tough field conditions
- Formation highly sensitive to workover fluids
- No success in stimulation
- Hoist crew with little experience in intelligent completions
- Stringent contract regulations
Auto Gaslift Technology

Pressure Drop vs. Gas Flow Rate: 3-1/2 HVC GL
Pupstr = 22200 kPa Temp = 95 C Gas S.G. = 0.70

Note: These results are estimates only and have not been calibrated or confirmed. They are to be used for information purposes only.
Auto Gaslift Technology

Control lines feed through

Surface hydraulic pump

Encapsulated control lines

ICV cross section

Accu pulse control system

2011 Gaslift workshop
The Technology

Surface control of ICV

ICV Operation

Orifice
Nozzle (Movable)
Collar (Static)
Arab-D Gas
Hanifa Production
Choke performance model

Pressure Drop vs. Gas Flow Rate: 3-1/2 HVC GL
Pupstr= 22200 kPa Temp= 95 C Gas S.G.= 0.70

Note: These results are estimates only and have not been calibrated or confirmed. They are to be used for information purposes only.
B – XX Techlog
Auto GL completion in B-XX

Poil = 200 bar
Pgas = 240 bar
Qoil before quitting = 15 m³/d

B-XX Re-Completion with AGL

SSSV @ ~ 50 mTBF

9 5/8” Casing, shoe @ 968.58 mTBF

Perforation: 2628-2637 mTBF
BLAST JOINTS TO COVER 10M ABOVE & BELOW PERFS
SPECIAL PROTECTION FOR THE CONTROL LINE TO PROTECT AGAINST EROSION ACROSS PERF INTERVALS & SSD
Perforation: 2742-2747 mTBF

Oil

Gas

SSD @ 2580 mTBF
7” WD packer @ 2600 mTBF
SSD @ 2615 mTBF
ICV @ 2700 mTBF
L/N with Blanking plug @ 2720 mTBF
SSD @ 2580 mTBF
SSSV @ ~ 50 mTBF

9 m

5 m

7” Casing, shoe @ 2917 mTBF
Field implementation

- Good support from the vendor
- Re-completed the wells as per plans – no surprises!
- Oil zone re-perforated to improve efficiency
- Activated the gas zone and flowed for clean up, plug installed and took the flow through ICV (100% open)
- Opened the oil zone
Field implementation

- It takes 1-2 weeks for stabilizing the well
- ICV tuning for controlling the gas injection into the tubing
- PLT and multi rate well testing for production optimization
- Function test ICV once in a year.
Field implementation

Well Trends during start up

After Stabilization
Sensitivity analysis on GOR

Reservoir GOR

Auto Gas Lift GOR

Inflow (IPR) v Outflow (VLP) Curves

Variables

\(\text{GOR (m3/m3)} \)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>200.00</td>
</tr>
<tr>
<td>2</td>
<td>300.00</td>
</tr>
<tr>
<td>3</td>
<td>400.00</td>
</tr>
<tr>
<td>4</td>
<td>500.00</td>
</tr>
<tr>
<td>5</td>
<td>600.00</td>
</tr>
<tr>
<td>6</td>
<td>700.00</td>
</tr>
<tr>
<td>7</td>
<td>800.00</td>
</tr>
</tbody>
</table>

PVT Method

- Black Oil
- Fluid Oil
- Flow Type: Tubing
- Well Type: Producer
- Artificial Lift: None
- Lift Type
- Predicting Pressure and Temperature (offshore)
- Temperature Model: Rough Approximation
- Rate
- Inflow Type: Single Branch
- Completion: Cased Hole
- Gravel Pack: No
- Gas Coating: No
- Reservoir Model: Vogel
- Relative Permeability: No
- Formation FI: 0.61936 (STB/day/psi)
- Absolute Open Flow (AOF): 724.2 (m3/day)
Results

- All the wells delivered as expected
 - 1.3 MM USD per well for recompletion with AGL
 - 40% increase in total field production
 - Significant capex saving
 - Stable well performance
 - Reduced HSE exposure
 - Minimum well interventions
Conclusions & Recommendations

- Auto gaslift proved successful in B field
- One more candidate field identified for full field implementation
- It is beneficial to have an ICV in the oil zone also
- Operations are relatively simple
- More fields under review for potential application
- Potential for game changer
References

SPE 105706
Intelligent Well Technology Used for Oil Reservoir Inflow Control and Auto-Gaslift, Offshore India
Michael Konopczynski, WellDynamics and Mike Tolan, BG Exploration and Production India Limited

SPE 104227
Smart well completion utilizes natural reservoir energy to produce high water cut and low PI wells in Abquaiq field
Nashi Al Otaibi et al.

SPE 104202
Auto, Natural or in-situ gaslift system explained
Adam Vasper, Schlumberger

SPE 103621
The evolution of advanced well completions results in enhanced well productivity and recovery in Saudi Aramco’s offshore oil fields
D.S Al Qudaihy et al.
References

SPE 100126
Case Study: Lennox - The race to produce oil prior to gas cap blow down
A. Clarke et al.

SPE 92891
Smart completion design with internal gaslifting proven economical for an oil development project
L Jin et al.

SPE 90664
Design of Intelligent Well downhole valves for adjustable flow control Offshore India
Michael Konopczynski, and Arashi Ajayi, WellDynamics

SPE 81107
Reservoir Aspects of Smart wells
Carlos A. Glandt Shell International E&P
References

SPE 77660
Remotely controlled in-situ gaslift on the Norne subsea field
Ferid T. et al.

SPE 74931
Natural gaslift: Theory and Practice
S. Betancourt, Schlumberger et al.

SPE 64466
Combined ESP / Auto Gas Lift Completions in High GOR / High Sand Wells on the Australian Northwest Shelf
K.J. Aitken et al.

MEALF
First In-Situ Gas Lift system in Offshore Saudi Aramco
Abdullah A. Al-Somali and Salman A. Al-Aqeel, Saudi Aramco
Thank You!
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (hereinafter referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.