Gas-Well De-Watering Method Field Study

Rick D. Haydel, Donald J. Brink, William K. Acker, Gary J. Gassiott, SPE, Altec, Inc.
Outline

• Definition of Liquid Loading
• Method Description, Goals, Highlights
• Case Studies with De-Watering Method
• Differences Between Case Studies
• Additional Field Statistics
• Lessons Learned / Future Plans
What is Liquid Loading

- Formation GLR falls below unloading rate
- Gradual build-up of well-bore fluid in well
- Well-bore perforations covered, become saturated
- Low-Producing Gas Wells
- Low SBHP
- Long Perforated Intervals
Liquid Loading Example

Pressure survey to determine liquid loading

Pressure

Depth

Gas gradient above liquid

Liquid level

Water gradient below liquid
Some gas may bubble up through liquid column
Liquid Loading Well Behavior

Decline curve as indicator of liquid loading rate

Smooth decline curve indicates no liquid

Liquid loading problems are indicated by erratic decline curve and lower production
De-Watering Method
Description

• Tail-pipe beneath production packer
• Carrier sub(s) spaced along tail-pipe
• Regulating device inside each sub
• Trapped gas pushes liquid level down
• Gas reaches carrier sub / Enters tail-pipe
• Continues down-hole as more gas comes in
De-Watering Method Goals

- Decrease the critical unloading rate
- Minimize fluid build-up across the perforations
- Maximize reservoir draw-down
- De-hydrate near well-bore area
- Maximize net gas production in well
Operational Highlights of Method

• No surface control / Driven by Reservoir
• Can allow well to flow longer on its own
• Regulators can be slick-line retrievable
Case Study #1

- Deep Gas Well in Rockies (flowing natural)
- Perforations = 12,321’ to 13,740’
- Casing = 7”, 32 #; No Production Tubing
- Well-Test Evaluation Date = 9/24/04
- H2O = 0 BPD, Oil = 0 BPD, Gas = 489 MCF
Case Study #1 Optimization

Plan

• Conventional gas-lift design w/ 3-1/2” tubing
• Production packer set at +/- 12,200’
• Install de-watering method beneath packer
• 2-7/8” Tail-pipe, 2 Regulators, EOT = 12,900’
• Date of Installation – October 2004
Case Study #1 Well-Bore Sketch

Sand Perfs
TCP perfs 120 deg phasing
12321'-333', 12341'-371', 12400'-404', 12511'-529', 12536'-650', 12669'-590', 12619'-440', 12685'-750', 12704'-792', 12810'-825', 12840'-860', 12920'-930', 12950'-1300', 13033'-1058', 13062'-140', 13152'-295', 13276'-296', 13369'-350', 13396'-440', 13510'-580', 13610'-586', 13708'-740'

7" Production Casing @ 13,519'
7" 20# & 32# N-55 & L-80 LF66 & FL45 casing
Primary cement: 500 cc 50/50 pose & 400 cc G

#1 GLV @ 5000
#2 GLV @ 6500
#3 GLV @ 10000
#4 GLV @ 10000
#5 GLV @ 11000
#6 GLV @ 11600
#7 GLV @ 12000
Case Study #1 Method Results

- Flowing Press/Temp Log on 11/1/2004
- Gas gradient from surface down to EOT
- Water level found below EOT
- Temp cooling noted across regulators
- H2O = 22 BPD, Oil = 10 BPD, Gas = 2 MMCFD
- Injection Gas = 1 MMCFD
Case Study #1 Final Press/Temp Profile

TUBING OVERVIEW

- Flowing Profile
- 0.05 psia/ft Average Gradient
- Lifting Point

COMPLETION OVERVIEW

- Flowing Completion Profile
- 0.07 PSIA/FT
- Fluid Level @ 12900' MD
- 0.39 PSIA/FT
- 0.46 PSIA/FT

June 13-14, 2011 2011 Appalachian Gas Well Deliquification Workshop
Case Study #1 Expanded Flowing Profile

Expanded Completion Profile

0.07 PSIA/FT

Gas Production
Case Study #1 Production History

Case Study #1 Production History Plot

- Net Gas
- Gas-Lift
- Water Rate
- Oil Rate

Date

Gas Rate (MCFPD)

BBL/Day

8/1/04 9/5/05 10/10/06 11/14/07 12/18/08 1/22/10
Case Study #2

- Deep Gas Well in Rockies on Gas-Lift
- Perforations = 12,528’ to 13,487’
- Casing = 7” , 32 #; Tubing = 4-1/2” 12.6 #
- No Initial Well-Test Evaluation Performed
- H2O = 225 BPD, Oil = 0 BPD, Gas = 75MCFD
- Injection Gas = 1200 MCFD
Case Study #2 Optimization

Plan

- Conventional gas-lift design w/ 2-7/8” tubing
- Production packer set at +/- 12,490’
- Install de-watering method beneath packer
- 2-7/8” Tail-pipe, 3 Regulators, EOT = 13,350’
- Date of Installation – April 2006
Case Study #2 Well-Bore Sketch
Case Study #2 Method Results

- Light gradient from surface to +/- 12,450’
- Water level below injection point to bottom
- Minimal temp cooling noted across regulators
- Water = 156 BPD, Oil = 0 BPD, Gas = 0 MMCFD
- Injection Gas = 858 MCFD
Case Study #2 Press/Temp Profile
Case Study #2 – Next Course of Action

• Well shut-in due to lack of production
• Opened back 1/16/08 for Well-Test Evaluation
• Method was evaluated again w/ similar results
• Recommendation to try annular gas-lift system
Case Study #2 Annular-Flow Results

- Annular gas-lift system installed 2/19/09
- One gas-lift orifice set at EOT = 13,500’
- H2O = 625 BPD, Oil = 0 BPD, Gas = 0 MCF
- Injection Gas = 2300 MCFD
Differences Between Case Studies

- Initial pre-install well-test analysis was obtained for Case Study #1
- EOT for Case Study #1 was strategically set
- Hydrocarbon potential was pre-identified for Case Study #1
Additional Example Deep Gas #1
Additional Example Deep Gas #2
Additional Field Statistics

- Deep gas field in Texas
- Average well depth = +/- 10,000’ to 11,000’
- Average perforated interval = +/- 150 feet
- Casing = 5-1/2”, 4-1/2”, Tubing = 2-3/8” 4.7#
- No pre-install well-test or reservoir data available
- 29 wells installed with method (2006 – 2009)
- 20 wells flowing naturally (Rates = 250 MCF, 30 to 50 BWPD)
Lessons Learned

- Important to understand well and potential
- Importance of EOT depth selection
- Well must have hydrocarbon potential
- Using lessons learned to select candidates
Future Plans for Method

• Develop a program to identify design criteria
 – Determine optimal number and depths regulators
 – Estimate gas passage to properly size regulators
• Develop a regulator with closing capabilities
 – Give system the ability to work deeper as possible
 • Maximize reservoir draw-down
 • Maximize production rates
References

Acknowledgement

Thanks to the engineering management and owners of Altec, Inc. for the permission, technical support, and financing required to support and print this paper.

Note:
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.