Plunger Lift Operations in the Marcellus Shale

Matthew Kravits, Range Resources-Appalachia
Ray Frear, Range Resources-Appalachia
Multi Products Co
Overview

Plunger Lift Background

• Liquid Loading
• Vertical Wells
• Transition to Horizontal Wells
• Future of horizontal plunger lift installations
Liquid Loading in Marcellus
Conventional Plunger Lift

- 13 3/8" 1 jt. 44.50' Sanded In
- 9 5/8" 5 jts 182'
- 7" 45 jts 1809'

Tubing Design:
SN, 1 jt, 'X' nipple, 201 jts. To surface
EOT - 6390'

Marcellus Shale
6428' - 6440' - 2 SPF
6478' - 6490' - 2 SPF

DTD: 6706'
WLM TD: 6705'
Transition to Horizontal Wells

Challenges

• Tubing/Plunger Set Depth
 • Minimal Experience
• Safe Snubbing Operations
 • X and XN nipple profiles
• Plunger Type
Horizontal Installations

• Set tubing at 50°, 60°, 70°
• All solid stock plungers stick in X
 • X profile ID = 1.875”
• Shortened single pad plungers
 • 8” in length, conventional length = 12”
 • Collapsed Pad OD = 1.860”
 • Extended Pad OD = 2.000”
• Pass through X then expand
Horizontal Installations

- Tubing ID = 1.995"
- X Profile @ 10° ID = 1.875"
- Standing Valve
- XN Profile @ 69°
- EOT @ 70°
- 90° (MD 7,162, 6,514' TVD)
Echometer Testing Program

- Fall depths
 - Plungers pass X-profile
 - Plungers reach bottom
- Benefits of 2 plungers
- Plunger acceleration theory from 2010 Seminar
Echometer Testing Procedure

- Tubing/Casing Transducers
- Acoustic Trace on Lubricator
- “Listening” no gun used
Fall Profile
Two Plunger Fall Profile

- Acoustic trace behaves like a single plunger fall

- **1st Plunger 2nd Plunger**
Two Plunger Test- Liquid Production

One Plunger

Two Plungers

Single Slug

Two Slugs
Plunger Acceleration

- Plungers speed up at kickoff point, KOP (5750’)
- Velocity increase from 140 ft/min to 279 ft/min

<table>
<thead>
<tr>
<th>MD, ft</th>
<th>Inc, °</th>
<th>Velocity, ft/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>5723</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5749</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5785</td>
<td>0.6</td>
<td>140</td>
</tr>
<tr>
<td>5817</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>5848</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5880</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>5912</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>5944</td>
<td>14.4</td>
<td>279</td>
</tr>
<tr>
<td>5975</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>6007</td>
<td>17.6</td>
<td></td>
</tr>
</tbody>
</table>
Reasons for Plunger Acceleration

• Centripetal acceleration at KOP causes plunger to ride on the low side of tubing
• Flow is directed to high side of tubing reducing the resistance of the plunger’s fall
• Less flow resistance allows plunger to fall normally
• Collapsed pads reduces the surface friction between plunger and tubing ID
Preliminary Conclusions

- Plungers can pass through the X-profile and reach bottom
- Shortened Pad Plungers
- Two plungers are not needed to reach bottom
- Two plungers produce more fluid
- Plunger acceleration theory confirmed
- Encourages further testing
Testing for 90° Potential

• 53 Echometer tests for 7 different wells

• Data exported from Echometer into Spotfire to be analyzed

• Fall profiles plotted relative to KOP

• Extrapolated fall velocity trends from observed data
Single Well Analysis

- 9 tests analyzed
- Two distinct trends
- Evident in other tests
- Normalize depths and trend data

KOP = 5716 ft
Single Well Trends
Mitchell #2H-Trend after to KOP
Single Well Conclusions
Single Well Conclusions

• Polynomial trend extrapolated and compared to directional survey

• Velocity = 0 ft/min @ 77°
 – XN depth currently at 46°

• Additional 31° through curve and 400’ MD

• Plunger can fall to within 140’ of top perfs at 86°
Trend after KOP
Velocity and Inclination Trends
Conclusions

• Single well example with known inclination shows potential for extra 31° and 400’ MD
• Velocity for all 53 tests extrapolated to 0 ft/min at 74° theoretical inclination
• Average MD from 74° to 90° is 225’
• No tests actually show a velocity of 0 ft/min prior to plunger reaching EOT
• Testing will continue as tubing is installed to 90°
Additional Slides--Plunger Cycle

Liquid slug

1. Liquid Flow
2. Gas Flow
3. Valve Closes and Plunger Begins Fall

Unloading

After-Flow

Shut-in

Plunger Arrives

Casing Pressure

Tubing Pressure

Acoustic Trace

Plunger on Bottom

Plunger Hits Liquid

Liquid Flowing at Surface

(Rowlan, McCoy, Podio 2003)
Additional Slides-- Plunger Cycle

Shut in phase-Plunger is falling
Additional Slides-- 53 tests

\[204.5413014174 + (-0.1372636801 \times X) + (0.0011337525 \times X^2) + (-1.8976 \times 10^{-6} \times X^3) \]
Velocity Trend

$$204.5413014174 + (-0.1372636801 \times X) + (0.0011337525 \times X^2) + (-1.8976E-06 \times X^3)$$

Inclination Trend

$$-3.96 + (0.11 \times X)$$
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.