Liquid Loading in Horizontal Wells

Cem Sarica, The University of Tulsa
Rob Sutton, Marathon Oil Company
Outline

- Flow in a Horizontal Gas Well
- Why Flow Matters?
- Similarities and Differences Between Pipe and Horizontal Well Flows
- Review of Multiphase Pipe Flow
- Multiphase Flow in Horizontal Wells
Flow in a Horizontal Gas Well

- **Single-phase Flow**
 - Dry Gas
 - Desired but Not Always Possible

- **Multiphase Flow**
 - Gas Flow with Frac-Liquid
 - Happens During Flow Back After Frac Operation in Gas Shales
 - Gas Flow with the Formation Water
 - Some Gas Shales Produce Water
 - Fracture May Extend to Water zones
 - Condensed Water
 - Gas Flow with Condensate Dropout
Fractured Horizontal Gas Well Sketch

Shale or tight sand

Water

gas
Heel-to-Toe velocity decreases along horizontal section
Why Flow Matters? …

• Early on Relatively High Gas Flow Rates and Velocities
• Later Gas Flow Rate and Velocities Decrease Significantly

• What Does This Mean for Water?
 – Can We Produce the Water Along With Gas?
 – What Happens If Gas cannot Efficiently Carry Water?
 • Liquid Loading
 • Reduction in Gas Flow Rate Due to Liquid Buildup
 • Liquid Flow Back or Diffusion in to the Formation
How can We Predict Loading?

- **First Attempt**
 - Use Techniques Developed for Vertical and Deviated Wells Such as Turner, Coleman, Etc.

- **Do They Work?**
 - Physics Used in Turner, Coleman, etc. Primarily are Based on Upward Movement of Liquid Droplets and Film
 - At Low Gas Velocities and Horizontal and Near Horizontal Configurations
 - Liquid Droplets and Annular Flow May not Exist

- **Not Expected to Work**
What Do We Do?

- Flow in Horizontal Wells Resembles the Flow in Pipelines
- There is Vast Amount of Know-How Already Developed and Available for Flows in Pipelines
- Opportunity to Tap into This Know-How and Develop Suitable Loading Prediction Tools
- Need to Assess the Compatibility Between Horizontal Well and Pipeline Flows
Similarities and Differences Between Horizontal Well and Pipeline Flows

• Similarities
 – Simultaneous Flow of Gas and Liquid
 – Undulating Geometry

• Differences
 – Pipelines Have Single Source While Horizontal Wells Have Multiple Source (Open Hole, Perforations, Fractures)
 • Varying Flow Rates Along Horizontal Well
 – Horizontal Wells are Considerably Shorter
 – Flow in Horizontal Wells May not Be Fully Developed
Review of Pipeline Flow

• Show and Tell
 – Relatively High Flow Rates
 • Low Liquid Loading Flow in a Horizontal Pipe (6 in. ID Pipe)
 – Relatively Low Flow Rates
 • Two-phase Flow at a Dip (3 in. ID Pipe)
 – Severe Slugging for a Pipeline-Riser System (May Resemble Up-dip Horizontal Well Configuration)
 • Two-phase Severe Slugging in a 3 in. ID Pipe
High Flow Rates

- High Flow Rates
 - Horizontal and Downward Inclined
 - Stratified Smooth and Wavy Flows
 - Annular Flow
 - Upward Inclined
 - Intermittent Flow in Addition to Above Flow Patterns
Stratified Smooth

Side View

Axial View

Gas $v_{SG} = 16$ ft/sec

Water $v_{SL} = 0.016$ ft/sec
Stratified Wavy

Side View

Axial View

Gas \quad v_{SG} = 32 \text{ ft/sec}
Water \quad v_{SL} = 0.032 \text{ ft/sec}
Stratified Wavy with Entrainment

Side View

Gas $v_{SG} = 57.5$ ft/sec
Water $v_{SL} = 0.12$ ft/sec
Low Flow Rates

- Hilly-Terrain Pipe Flow (Flow in a Dip)
 - Video Clip-1 (No Liquid Input at Inlet)
 - Video Clip-2 (Liquid Input at Inlet)
• **Toe-up Configuration (Severe Slugging Phenomenon)**

- Slug
- Slug Production
- Blowout
- Liquid Fallback
Low Flow Rates …

• Severe Slugging Video
Multiphase Flow Predictive Tools

- All Purpose Predictive Tools Not Capable of Predicting Complex Flow Behavior Accurately
 - TUFFP Studied Extensively Low Liquid Loading, Hilly Terrain Pipeline Flow, and Severe Slugging
 - Developed Predictive Tools
Multiphase Flow in Horizontal Wells

- No Reliable Predictive Tools
- Pipeline Flow Prediction Tools cannot be readily applied since the flow rates in horizontal wells are significantly low and physics of the flow is significantly different as evidenced from videos.
- There is a need to further studies to develop liquid loading prediction tools for horizontal wells.
Conclusions

• Existing Conventional Liquid Loading Prediction Tools are not Applicable for Horizontal Wells
• No Available Predictive Method for Liquid Loading in Horizontal Gas Wells
• Similarities and Differences Between Pipeline and Horizontal Well Flows Are Demonstrated
• Knowhow Developed for Pipeline Flow can Be Used in the Understanding of Liquid Loading in Horizontal Gas Wells
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.