Gas-Well De-Watering Method Field Study
Rick Haydel, Service Engineer – Altec, Inc.
Outline

- Definition of Liquid Loading
- Description of GO System ®
- Goals of GO System ®
- Operational Highlights of GO System ®
- Case Study #1
- Case Study #2
- Differences Between Case Studies
- Additional Field Statistics
- Lessons Learned from Field Study
- Future Plans for GO System ®
Definition of Liquid Loading

• What is liquid loading?
 – Gradual build-up of well-bore fluid within the well over time

• What is the primary cause of liquid loading?
 – Decline in the formation GLR below the critical flow-rate for the applicable tubing size

• What effect does it have on the well?
 – Gradual covering up of well-bore perforations, creating back-pressure on formation and a decrease in production rates

• What types of wells does it typically affect?
 – Low-Producing Gas Wells
 – Low SBHP
 – Long Perforated Intervals
• Carrier sub(s) are spaced out along tail-pipe beneath a production packer
• GO Regulator exists inside of each sub which allows regulated gas passage
• During production, gas accumulates beneath the packer, between the tail-pipe and the casing
• As the gas builds beneath the packer, it pushes the formation liquid level down towards the carrier sub(s)
• This trapped gas is allowed to pass from the casing annulus into the tail-pipe through the regulator inside of the carrier sub
GO System ® Diagram

- Production Tubing
- Production Casing
- Production Packer
- Tail-pipe
- Fluid Level
- Formation Flow into Well-bore
- Gas-Lift System for Unloading
- Trapped Formation Gas
- Regulator
- EOT

Formation Flow into Fluid Level Regulator
Goals of the GO System ®

- Decrease the critical flow-rate beneath the packer

- Eliminate/Reduce fluid build-up across the well-bore perforations during production

- Maximize net gas production in well by maximizing the reservoir draw-down and by keeping perforations dry (near well-bore dehydration)
Operational Highlights of the GO System®

- No surface control / Driven by Reservoir (Low Maintenance)
- Allows the well to flow longer on its own without the additional expense and operational issues typically associated with gas-lift
- Regulators are slick-line retrievable
 - Interchangeable regulators give the system the flexibility to adapt to the needs of the well (Based on the production rates and flowing behavior of the well)
 - Note: Depends on casing size
Case Study #1

- Deep Gas Well in Rockies
- Perforations = 12,321’ to 13,740’ MD
- Casing = 7”, 32 #, N-80
- No Production Tubing (Flowing up casing)
- Well-Test Evaluation Date = September 24, 2004
- Production Rates
 - Water = 0 BPD
 - Oil = 0 BPD
 - Gas = 489 MCFPD
Case Study #1 – Initial Press/Temp Profile

Tubing Overview

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Pressure CHANGE (psia/ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 500</td>
<td>0.005</td>
<td>Static Profile</td>
</tr>
<tr>
<td>500 – 700</td>
<td>0.02</td>
<td>Static Profile</td>
</tr>
<tr>
<td>700 – 900</td>
<td>0.1</td>
<td>Flowing Profile</td>
</tr>
</tbody>
</table>

Gas Contact @ 6240’ MD

Completion Overview

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Pressure CHANGE (psia/ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 – 900</td>
<td>0.19</td>
<td>Static Profile</td>
</tr>
<tr>
<td>900 – 1000</td>
<td>0.27</td>
<td>Flowing Profile</td>
</tr>
</tbody>
</table>

Gas / Oil Contact @ 12579’ MD

Feb. 1 - 5, 2010

2010 Gas-Lift Workshop
Case Study #1 – Optimization Plan

- Place well on conventional gas-lift w/ 3-1/2” tubing
- Install gas-lift system above the production packer set at +/- 12,200’ MD
- Install GO System ® beneath packer w/ 2-7/8” Tail-pipe, 2 GO ® Regulators, and EOT Depth at 12,900’ MD
 - Note: EOT depth was determined based upon a production log provided by the operator showing 100% H2O below a depth of 12,900’ MD / Cross-checked with well-test analysis (Temp Profile)
- Date of Installation – October 2004
Case Study #1 – Well-Bore Schematic

Sand Perfs
TCP perforated 120 deg phased
12321-33', 12344-371', 12400-404', 12511-528',
12538-560', 12600-580', 12610-640', 12,000-700',
12754-790', 12819-825', 12846-860', 13200-930',
12680-13000', 13033-1358', 13080-1401, 13152-2807',
13278-208', 13328-350', 13300-440', 13510-560',
14201'-505', 14.3'-740'

7'' Production Casing @ 13,800'
7'' 20# & 32# R-80 & L-80 LT&C & PLAS casing
Primary cement: 300 x 50/50 port & 400 x 33
Case Study #1 – Results w/ GO System ®

- Flowing Pressure/Temperature Log on 11/1/2004
- Gas gradient found from surface down to EOT
- Water level was found below EOT
- Gas influx (temperature cooling) was noted across each GO ® Regulator
- Production Rates – 11/1/2004
 - Water = 22 BPD
 - Oil = 10 BPD
 - Net Gas = 2 MMCFPD
 - Injection Gas = 1 MMCFPD
Case Study #1 – Final Press/Temp Profile w/ GO System ®

Feb. 1 - 5, 2010
2010 Gas-Lift Workshop
Case Study #1 – Expanded Flowing Completion Profile with GO System®
Case Study #1 – Production History

Case Study #1 Production History Plot

- Net Gas
- Gas-Lift
- Water Rate
- Oil Rate

Date:
- 8/1/04
- 9/5/05
- 10/10/06
- 11/14/07
- 12/18/08
- 1/22/10

Gas Rate (MCFPD)
- 0
- 500
- 1000
- 1500
- 2000
- 2500

BBL/Day
- 0
- 100
- 200
- 300
- 400
- 500
Case Study #2

- Deep Gas Well in Rockies on Conventional Gas-Lift
- Perforations = 12,528’ to 13,487’ MD
- Casing = 7”, 32 #, N-80
- Tubing = 4-1/2” 12.6 # VAM
- No Initial Well-Test Evaluation Performed
- Production Rates = January 21, 2006
 - Water = 225 BPD
 - Oil = 0 BPD
 - Net Gas = 75 MCFPD
 - Injection Gas = 1200 MCFPD
Case Study #2 – Optimization Plan

- Place well on conventional gas-lift w/ 2-7/8” tubing
- Install gas-lift system above the packer set at +/- 12,490’ MD
- Install GO System ® beneath packer w/ 2-7/8” Tailpipe, 3 GO ® Regulators, and EOT Depth at 13,350’ MD
 - Note: EOT depth was not selected based upon a production log or well-test analysis. Depth was selected based upon a goal to keep the majority of the perforations uncovered with the ability to change the system at a later point in time.
- Date of Installation – April 2006
Case Study #2 – Well-Bore Schematic
Case Study #2 – Results w/ GO System®

- Flowing Pressure/Temperature Log on 5/3/2006
- Light mixed gas/fluid gradient found from surface down to orifice gas-lift mandrel at +/- 12,450’ MD
- Water level was found below orifice injection point down to bottom of perforations
- Minimal gas influx (temperature cooling) was noted across each GO Regulator (gas bubbling through)
 - Water = 156 BPD
 - Oil = 0 BPD
 - Net Gas = 0 MMCFPD
 - Injection Gas = 858 MCFPD
Case Study #2 – Next Course of Action

• Well was shut-in due to lack of net gas production
• Brought back on-line for Well-Test Evaluation performed on 1/16/2008
• GO System ® was evaluated again with similar results as those seen on 5/3/06 test
• Recommendation made to install annular gas-lift system
 – Inject gas down tubing / Flow up casing; Requires more injection gas to sweep annulus
 – EOT placed @ 13,500’ MD
 – Goal to artificially sweep annulus with injection gas and keep fluid off of perforations in order to maximize net gas production
Case Study #2 – Annular Flow Results

• Annular gas-lift system installed on 2/19/2009

• Only one point of gas injection possible at EOT (13,500’ MD)

• Production Rates 4/20/2009
 – Water = 625 BPD
 – Oil = 0 BPD
 – Net Gas = 0 MCFPD
 – Injection Gas = 2300 MCFPD
Differences Between Case Studies

• Primary Differences: Case Study #1 vs. Case Study #2
 – Initial well-test analysis was obtained prior to installation of #1
 – EOT for #1 was strategically set based upon temperature and production logs
 – Existence of hydrocarbon potential was identified on #1
 • Estimate of gas potential helped select tail-pipe size and size of GO® Regulators for gas passage and optimal performance
 – Case study #2 did not show any gas production with the GO system or annular lift / Minimal hydrocarbon potential existed which was not properly identified before installation
Additional Field Statistics

- Deep gas field in Texas
- Average well depth = +/- 10,000’ to 11,000’ MD
- Average perforated interval = +/- 150 feet
- Casing = 5-1/2” ; 15.5 # & 4-1/2” ; 11.6 #
- Tubing = 2-3/8” 4.7# L-80
- No initial well-test or reservoir data available prior to installation
- 29 total wells installed with GO System ®
 - Dates of installation – 2006 through 2009
- 20 wells still flowing naturally with GO System ®
 - Avg. daily production rates = 250 MCFPD ; 30 to 50 BWPD
- Need field/down-hole data to properly evaluate the system’s performance and its ability to be changed / improved
Lessons Learned from Field Study

• Primary Lessons Learned
 – Importance of data collection and/or an understanding of the well’s potential before installation of GO System ®
 – Importance of EOT depth selection in order to stay away from added water production where hydrocarbon potential may not exist (log evaluation if possible)
 – Well must have hydrocarbon potential / At least enough to critically unload the tail-pipe in order to allow the system to work properly
 • Choosing number and depth(s) of GO ® Regulator(s)
 • Choosing tail-pipe size (3-1/2”, 2-7/8”, 2-3/8”, etc.)
• Use of lessons learned will help in better selecting future candidates
Future Plans for GO System ®

• Currently developing a program in order to better identify and define design criteria for the GO System ®
 – Determine optimal number and depths GO ® Regulators
 – Estimate gas passage capabilities for sizing of regulators
• Currently developing a GO ® Regulator w/ closing capabilities
 – Will give the system the ability to work as deep as possible by allowing the upper regulators to close when the injection point reaches the regulator below it
 • Maximize reservoir draw-down
 • Maximize production rates
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.