Implementation of Real-time Gas-lift Optimization in Dubai Offshore Field
Authors

• Fathi Shnaib, SPE, Production Engineering Team Leader, Dubai Petroleum
• Manickam S. Nadar, SPE, Production Engineering Consultant, Smart Zone Solutions
• Nick McAlonan, SPE, i-DO Team Leader, Weatherford Production Optimization

SPE 126680
Outline

- Background
- Objectives
- Workflows
- Benefits Realized
- Conclusions
Background

• 4 fields Offshore
• Mature Complex Gas Lifted Field
• Challenges of maintaining production
• Current Optimization is a highly manual effort with long cycle time
<table>
<thead>
<tr>
<th>Current Limitations</th>
<th>Expected Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Long optimization cycle time</td>
<td>• Automatic model update workflows leads to short optimization cycle time</td>
</tr>
<tr>
<td>• Slow identification of underperforming wells</td>
<td>• Manage by Exception Well Monitoring with Alerts on sub optimal performance</td>
</tr>
<tr>
<td>• Hard to accurately allocate well production / identify loss</td>
<td>• Automatic back allocation system & target comparison</td>
</tr>
<tr>
<td>• Disparate data making comparisons / sharing of data across company harder</td>
<td>• Unified data set across company accessible to all – linking real time, models</td>
</tr>
<tr>
<td></td>
<td>and corporate KPI’s</td>
</tr>
</tbody>
</table>
Sustainable Production Optimization

Gains – Offline Modelling

Sustained Gains - RTO

Optimisation gains revert to norm as system changes: automation of process is key to sustain the gains

Gains – competition

nb: sporadic processes

Slide builds itself...

Increased Value Over ‘Do Nothing’

Time

Simple Manual Optimisation
Complex Manual Optimisation (Offline)
Complex Automated Optimisation (i-DO)
Automation reduces cycle time

- System automatically gathers and QC’s data (real time and well test) based on inbuilt algorithms customisable by the user
- Well models tuned to the latest well test data (if well test data validation is successful)
- Latest data passed to asset model automatically to allow full field optimization at any point in time
- Run optimization frequently producing new optimal set points
- Analyse problems identified by monitoring
Providing Continually Up to Date Models

Well Testing / Model Updates

• Validation controlled by user defined constraints

• Managed by exception so user can concentrate on issues

• Well models tuned to the latest well test data

• Multiple calibrations available including PI, Pres and L factor

• Latest IPR and Surface Performance Curves automatically generated and made available to rest of system and users

• Optimal performance envelope identified
Diligent tracking of well test results

Well test validation

- Trends of well parameters (input values as well as calculated values) can be viewed
- The passed and failed well tests will be indicated on plots
- System does not tolerate inaccurate test data
Reduce Downtime

Well Monitoring

- Monitor all wells in the system on a manage by exception basis
- Calculate flowing status/times based on user set formula and estimate rates automatically
- Automatically compare current performance against expected model predictions and ‘alarm’ on deviations
- Identify anomalies using trends for comparison
- Outlier detection and fall back mechanism built in
Track Full Field Production At A Glance

Allocation, KPI’s Overview

- Production Loss Management & reconciliation with Back Allocation with comparison to theoretical
- Identify underperforming wells / upside opportunities by comparing to KPI’s
- One screen overview of performance of the asset with full drill down for further analysis
Reservoir Monitoring

VRR, Offtake Management

- Automatic calculation of Voidage Replacement Ratio on a zone and compartment basis
- Identification of under or over injecting areas allowing better injection strategy
- Comparison of reservoir pressures
- Trending including cumulative net offtake

Feb. 1 - 5, 2010
Benefits Realised

• Multiple new optimization opportunities identified
• Focused engineering and management time on solving issues rather than data gathering
• System has highlighted the need for more accurate and reliable well tests
• Several wells identified as unstable
• Wells analysed deeper and quicker due to combination of measured and calculated results available in one system
• Prioritization done earlier in the day as system identifies suspect candidates ready for morning meeting
• Instrumentation and data errors identified earlier
• Early days – many more opportunities
Conclusions

Previous Limitations

- Long optimization cycle time
- Slow identification of underperforming wells
- Hard to accurately allocate well production / identify loss
- Disparate data making comparisons / sharing of data across company harder

Results Achieved

- Short optimization cycle time – up to date model available on demand
- Reduced Downtime
- Tracking Of Full Field Production At A Glance
- Improved workflows enabling faster and better decision making and unity of data available to all
Implementation of Real-time Gas-lift Optimization in Dubai Offshore Field

Fathi Shnaib, SPE, Production Engineering Team Leader, Dubai Petroleum

Manickam S. Nadar, SPE, Production Engineering Consultant, Smart Zone Solutions

Nick McAlonan, SPE, i-DO Team Leader, Weatherford Production Optimization
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (hereinafter referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.