Gas Lift Valves Barrier Testing

Sven Aarrestad, IRIS
Jørn Andre Carlsen, Statoil
Statoil & IRIS*

- In 1982 Statoil introduced a qualification testing program for Down Hole Safety Valves
- This was the start for International Research Institute of Stavanger (IRIS)* of their third part testing for Statoil
- More than 25 years experience of testing down hole equipment is the base for gas lift valve barrier testing

* Former Rogaland Research
"Gullfaks Accelerated Production Project" - 1983.

- The current API 14a was not sufficient for the qualification requirements needed for a sub sea installed DHSV in the North Sea
- Testing of DHSV according to Statoil`s requirements resulted in:
 - Improvement of the reliability
 - Elimination/reduction of work overs
- The following companies where represented in the testing:
 - Baker
 - Otis (Halliburton)
 - Camco (Schlumberger)
 - AVA
Requirements for gas lift valves as well control barrier elements

• The Norwegian Petroleum Government:
 "An operator that wants to use gas lift valves as satisfactory barrier elements against the reservoir must consider these valves to be down hole safety valves”

• NORSOK D-010:
 "For gas lift valves to qualify as a well barrier there shall be a qualification test demonstrating the valves ability to be gas tight over an operator defined number of cycles”
Requirements for gas lift valves as well control barrier elements

• Statoil WR0534:

"The gas lift valve(s) shall together with the tubing be part of the primary barrier"
Why a qualification test program?

- As a Barrier Valve in the Tubing?
 - According to ISO 17078-2: “they are not designed nor intended to be a part of the safety system, nor to be a part of a tight shut-off pressure safety seal”
 - The gas lift valve is allowed to leak 35 std cu ft/day or 6883 ml/10min
 - Statoil requirement is: ~0.1 std cu ft/day or 20 ml/10min
Why a qualification test program?

• In Sub Sea Applications with a high intervention cost
 – Replace the need for installing a Dummy Valve
• Installed during the initial completion
 – Withstand the initial pressure test of the completion.
• Not be eroded during the unloading nor during the gas lift sequences
Valve suppliers

- Valves from the following suppliers have been tested in the period of 2005 – 2009:
 - Schlumberger, Baker Oil Tools, Weatherford and Petroleum Technology Company (PTC)
Test Facility at IRIS

Located in Stavanger, Norway
Test Facility at K-Lab
Gas Lift Test Facility – main capacities

• Back flow integrity test
 – 100 psi to 10000 psi by use of gas (nitrogen) and water
 – Bubble detection system: Visual reading by use of camera from 0 to 30 ml/10 sec (test acceptance criteria: 20 ml / 10 min)

• Unloading test
 – Test flow rate: 1.5 bbl`s /min
 – Max. during test: 3 bbl`s / min
 – Max. flowing condition: 4350 psi ~2 bbl/min
Test Program

- Back check valve is free to move from closed to open position
- Minimum amount of reverse flow and pressure required to close the back check valve
- Back check valve is water and gas tight
Test Program

- Unloading operation as in a real well
- Determine the back check valve function (open-close)
- Verify barrier integrity after a predefined circulated volume at a certain flow rate
Test Program

- Gas lift operation as in a real well
- Determine the back check valve function (open-close)
- Verify barrier integrity (gas tight) after 100 cycles
Test Program

- Similar to the Initial function test
- All tests were performed in horizontal position
Test Program Optional

- Simulate the effect of debris that may be present in the annulus
- To be performed only when the valve has been qualified
- Failing during the erosion test will not disqualify the valve
Test Acceptance Criteria

1. The back check valve shall close at a differential pressure of less than 25 psi

2. Liquid: No more than 1% reduction in the differential pressure over the hold period of 10 min

3. Gas: No more than 20 ml gas leakage over the hold period of 10 min
 The bubble rate shall not increase during the hold period

• Final qualification: Field proven – 10% of expected life time
Test findings

- Valves did not meet the Back Flow Integrity Test
- Valves had to be slammed closed to seal off
- Valves failed due to incorrect tolerances
- Valves did not behave in a consistence manner
- Valves failed also after lapping of sealing surfaces
Test findings

- Valves did not meet the Back Flow Integrity Test
- Valves failed due to incorrect tolerances (stuck check)
- Check did not seal off after lapping of sealing surfaces
- The differential pressure to keep the valve in fully open position was found to be almost 50% higher than stated by the valve supplier

Soft Seal was cut in two pieces
Test findings

- Check and spring were damaged
 - The check oscillated and rotated
- The sealing mechanism was damaged
 - Too low differential pressure across the valve
Test findings

- Valves did not meet the Back Flow Integrity Test.
- Valves had to be slammed closed to seal off - Some valves failed even though
- Squeezed soft seal
- The check had to be pushed off the seat by raising the annulus pressure to more than 250 psi

6 valves failed
Valve sealing design

• The following check and soft seal combinations have been tested:
 • One check
 • Two checks
 • With and without spring
 • With and without soft seal
 • Combinations of the above
Conclusion test findings

- Combination qualified
 - One check
 - Metal to metal sealing surfaces
Status in 2007

- A total of 8 gas lift valve designs from different suppliers were tested from 2005 to 2007
- None of them satisfied the test acceptance criteria stated in Statoil's qualification test program
 - Was the test realistic?
 - Did we have to reduce the test acceptance criteria?
Testing continued in 2007

- No revision of the test criteria was done
- A new gas lift supplier was introduced
 - 6 more gas lift valve designs were tested
- A total of 220 days has been used for testing at IRIS and 45 days at K-lab, from 2005 to 2008
Qualified valves

The following suppliers have qualified their valves

- Petroleum Technology Company (PTC)
 - 1”, 1 ½” and 1 ¾” SafeLifts
- Schlumberger*
 - 1 ½” XJR and 1 ¾” X-Lift

*At Schlumberger provided test facility.
Conclusion

Barrier qualified gas lift valves are now available to Statoil
Thank you

Presenters name: Jørn Andre Carlsen - Statoil
 Sven Aarrestad - IRIS
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

– Display the presentation at the Workshop.

– Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.

– Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.