Single-Point Gas Lift Design Using Dynamic Simulation

Juan Carlos Mantecon
Advisor

SPT Group
Single Point Injection Gas Lift

- Subsea General Issues
- Gas Lift Design Issues
- Subsea Gas Lift Design Issues
- Single Point Injection Issues
- Dynamic Simulation
- Understanding Slugging
- System Integration
- Surface Control GLVs
- Real-time Online Optimization
- Summary
Subsea General Issues

- Wells usually share flowline to platform:
 - FTHP cannot be considered constant
 - Over-injecting lift gas causes oil deferment

- Flowline/riser system is prone to slugging:
 - No validity of steady-state models
 - Difficult well kick off (risk of platform trip)

- Subsea wells are hardly ever surveyed (expensive access)
 - Long flowlines -> several hours stabilisation time (> 8 hrs after GL rate change)
 - Slugging -> long test times
 - Difficult to test at normal operating conditions
 - Multi-rate testing of one well takes days

- Wells are sporadically tested (oil deferment)

- Downhole gauges/flowmeters are lacking/ malfunctioning
General Gas Lift Design Issues

Modeling concerns:

- **Stability**
 - Cause of Slugging

- **Annular Flow**
 - P-T gradients
 - Condensation (dry gas?)
 - Heading

- **Heat Transfer**
 - Counter-currents effects
 - T @ valve location

- **Non-Constant Fluid Composition in Tubing above Injection Point**

- **Unloading Valves Operation**

Gas Lift is clearly a transient system
Subsea Gas Lift Issues

• Zero Intervention Philosophy
 (High Cost Re-Entry / Impractical)
 – No unloading valves
 (no multi-point injection)
 – No re-entering to change GLVs
 – Orifice (no moving parts – higher life)

• Single Point Injection
 – Downhole
 – Wellhead
 – Riser
Single-Point Gas Lift Issues

- Stability (GL System Flexibility Lost)
 - Reduced operational range vs conventional GL: upper GLV injection can keep well in production and generating revenue (gone!)
 - Instability may be dampened due to multi-point injection in unloading GLVs (gone!)
 - Well-Riser Slugging Interaction (needs system integration)

- Significantly higher operating pressure is required to unload the well to this single depth.
Single-Point Gas Lift Issues

• No unloading GLVs may result in a shallower operating point and reduced draw-down – depending on compressor capacity economics

• If max injection pressure is already pre-selected, then: inj. depth variable. If not, inj. depth in well fixed as deep as possible, above 60° deviation – no limit for remote GLVs

• Once injection point is set, there is a minimum surface inj. rate required to maintain sufficient annular back pressure for continuous GL – it is a function of orifice size and flowing Ptubing (WHP, PI, reservoir pressure, watercut, etc.)
Subsea Single-Point Gas Lift Issues

- More Difficult Troubleshooting, Well Testing and Surveillance due to Subsea Environment and single point injection

- Dynamic simulation is necessary to properly design and operate subsea gas lift single point injection wells and systems due to the reduced system’s flexibility and range of application
Dynamic Simulation

- Prior to defining the gas-lift design, detailed flow assurance studies must be complete.

 For subsea and deepwater, the fluid behavior in the integrated well-flowline-riser system dictates the artificial lift design, not the wellbore environment itself.

- Dynamic Flow Assurance studies should include:
 - Stability analysis to determine P-T profiles, liquid hold-up and minimum gas / fluid velocities required for well-riser stability.
 - Well
 - Well-Flowline-Riser integrated system
 - Slugging Type & Severity (horizontal & deviated wells, riser):
 - Hydrodynamic slugging (slip induced)
 - Terrain induced slugging
Flow Assurance studies should include (cont.):

- **Optimum Injection Point and Gas Rate**: The primary cause of wellbore/flowline slugging is that the superficial gas velocity is too low. The addition of GL gas increases the superficial gas velocity, and changes the multiphase flow to a more stable flow regime.

- For high pressure gas lift scenarios, need to address:
 “Is the gas really a gas at the point of injection?”

- **Annulus/Inj. line**: Condensation could cause erosion of GLVs – eliminated by maintaining the temperature above condensation.

- In addition, issues regarding hydrates, wax, emulsions and other fluid behaviors must also be addressed.
Slugging
Slugging

Blue = Gas
Green = Oil
Red = Water
Gas Lift – One Injection Point
Example Setup

500 psia sep press

3 1/2”

5 1/2”

60°F

10000 ft

Choke at injection point

GOR = 500 scf/bbl

250°F, 3300 psia and 3 bbl/psi
Gas Lift – One Injection Point

Liquid Content

- Gas Lift Rate
- Liquid Content

Time [h]

Feb. 1 - 5, 2010

2010 Gas-Lift Workshop
Gas Lift – One Injection Point

BHP Pressure

Gas lift rate

BHP

Feb. 1 - 5, 2010

2010 Gas-Lift Workshop
Riser Gas Lift Stability

- Sever riser slugging occurs when liquid accumulates at the riser base and totally fill a section of the flowline and riser for an extended period of time under some flow conditions, especially when there is a downward slope in the flowline at the riser base and the flowrate is low.
Riser Gas Lift Stability
Severe Riser Slugging Mitigation

- Increase GL gas rate (no additional subsea equipment required)
- Reduction of flowline diameter and or riser diameter
- Gas injection in the riser
- Automatic flow rate control system
- Choking (reduce production capacity)
- Increase of backpressure (reduce production capacity)
- Splitting the flow into dual or multiple streams
- Use of mixing devices at the riser base
- Internal small pipe insertion (intrusive solution)
- External multi-entry gas bypass
- Internal coil tbg-packers in pipeline and riser
- External bypass line
- Subsea separation (2 separate flowlines and a liquid pump)
- Foaming (requires foaming agents and a way to form the foam)
Integrated Modelling Application

Gas Lift Example

Reservoir-Well-GL-Flowline-Riser-Separator-Facilities

- **Quasi-dynamic Reservoir:** incorporated explicitly
- **Facilities:** Simple model
Integrated Modelling Application
Gas Lift Example
Reservoir-Well-GL-Flowline-Riser-Separator-Facilities
Advantages Summary

- Higher reliability than conventional completion using unloading valves
- Meets “zero intervention” philosophy set for subsea developments
- Fewer expensive GL mandrels required (less relevant)
- Removal of moving parts or parts that could leak when using an orifice
- Eliminates risk of incorrect pressure settings on bellows (or inappropriate springs) and T effects
- Reduce the pressure differential require for a “hot start”.
Single Point Injection Using Orifice

Disadvantages Summary

- Less flexible design
- Less Range of Application
- Requires a minimum gas injection rate for well stability
- Requires a higher injection pressure
- Valve orifice erosion becomes an issue
- Operating valve may have to be set higher in the well (less production rate)
- A well with only one mandrel will require a major well intervention should the operating valve have a problem
- May require more expensive remote controlled GLV (less relevant)
Surface Controlled GLVs

• **Advantages**
 – Eliminates need for extensive orifice sizing
 – Reduces risk of erosion. Can remain “full open” during unloading and then close to necessary orifice size.
 – Orifice size can change as well conditions change without an intervention
 – Can be set deeper in the wellbore

• **Disadvantages**
 – Expensive (sometimes it is difficult to justify the cost of this system)
 – May require duplication (for risk reduction)
Real-Time Online Dynamic Simulation

• The stabilization of slugging GL wells is achieved by a dynamic feedback control solution using the production choke at the wellhead.
 – The primary input to the dynamic feedback controller normally is a measurement of the downhole pressure.
 – The injection choke port size can also be controlled.
 – A dynamic Simulator is critical to develop the control algorithm - SPE 56832

• Real-time Online dynamic simulator
 – Slug flow warning
 – Gas Lift Optimization Advisor
 – Virtual gauge and flowmeter
 – Erosion, Corrosion monitoring
 – Hydrate Advisor
 – MEG, MeOH inhibitor monitoring
 – Operator training simulator
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.