Pumping Unit Gear Reducer Failures
Data from Before and After Repairs

James Harris – H & H Well Services, LLC
Robert Harris – H & H Well Services, LLC
Lynn Rowlan – Echometer Co.
Introduction

• Presentation will show data acquired before repair and after repair to multiple pumping unit gear reducers.

• Gear reducers were identified as damage to the point of failure and required repairs to return to proper operation.

• Gear reducer failures tend to occur gradually over an extended time period.

• Proper design, utilization, and routine maintenance of pumping units in rod pump systems can prevent these failures.
Before And After Representative Data Will Be Presented Including:

1. Surface and Pump Dynamometer Cards
2. Existing and Inbalance Net Gear Box Torque Signature
3. Pictures of damaged and repaired gear reducer parts
Gear Reducer Life Curve from Lufkin

Reduced Gear Life Relative to % Overload

Life, years

Percent Overload

100% 105% 110% 115% 120% 125% 130%

12-J Before

B #1 After

178% After

1-F
Balanced is More Uniform Torque Loading Throughout Stroke

Mechanical/Torque (in-lbs) or Electrical/Power (kW) Signatures for a Unbalanced or Balanced Pumping Unit:
Use Surface Dynamometer Card And Torque Factors Together With Counterbalance Moments From The Crank And Weights to Determine Net Gearbox Torque Loading.

Rating

- Gearbox: 114000 in-lb
- Peak Balanced: 117286.6 in-lb
- Peak Existing: 129701.5 in-lb

Counter Balance Change:

- Decrease For Balance: 12635.6 in-lb

Weight Of Counterweights To Be Moved: 3652 lb

Move Counterweights: IN 3.5 in

From Their Present Location To Balance Unit.
Use Input Motor Power, Motor and Drive Efficiencies and The Pumping Unit Speed to Determine Net Gearbox Torque Loading
Weight Heavy Need to Move Weights in 18 Inches

Permissible Load (K-Lbs) vs Position (in)

PRT 1206

Net Torque (K-in-Lbs) [Balanced]

Net Torque (K-in-Lbs) [Existing]

Rating	Peak Balanced	Peak Existing
Gearbox | 228000 | 143523.2 | 212843.5 in-lb

Counter Balance Change:
- DECREASE
- For Balance: 69973.6 in-lb

Weight Of Counterweights To Be Moved: 3956 lb

Move Counterweights: IN 17.7 in

From Their Present Location To Balance Unit

12 J

Stroke: 34

Overlay Power Data

Page Up | Page Down
Need to Move 3956 Lbs Weights IN 18 Inches
Before Gearbox Loaded 165% of 228 Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Peak Balanced</th>
<th>Peak Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gearbox</td>
<td>228000</td>
<td>377254.7</td>
</tr>
<tr>
<td></td>
<td>221386.3</td>
<td></td>
</tr>
</tbody>
</table>

Counter Balance Change:
- INCREASE
- For Balance 157015.5 in-lb

Weight Of Counterweights To Be Moved 1542 lb

Move Counterweights OUT 101.8 in

From Their Present Location To Balance Unit
After Gearbox Loaded 178% of 228 Rating

Overloaded Pumping Unit
Can’t be balanced with current Counterweights,
Requires additional CW to balance with current stroke - pumping off
Consider re-stroking to 74” – CW

Net Torque (K-in-lbs) [Balanced]

Net Torque (K-in-lbs) [Existing]

Counter Balance Change:
- INCREASE For Balance 176479.3 in-lb
- Weight Of Counterweights To Be Moved 1542 lb
- Move Counterweights OUT 114.4 in

From Their Present Location To Balance Unit

Rating
- Gearbox 228000
- Peak Balanced 233390.4
- Peak Existing 406151.3

in-lb
Gearbox Loading OK, But Permissible Load Exceeded When Fluid Level is Lowered

36 J After

<table>
<thead>
<tr>
<th>Gearbox</th>
<th>Rating</th>
<th>Peak Balanced</th>
<th>Peak Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>228000</td>
<td>207686.0</td>
<td>226628.0</td>
</tr>
</tbody>
</table>

Counter Balance Change:
- INCREASE For Balance 21774.4 in-lb

Weight Of Counterweights To Be Moved: 3302 lb

Move Counterweights OUT 6.6 in
From Their Present Location To Balance Unit
Pumping the Well Down will cause the Gear Reducer to be Overloaded

36 J After
Old Gears in Case
New Intermediate Gears
High Speed Shaft

Old Shaft

New Shaft
Gear Wear
High Speed and Intermediate
Out of Balance Gearbox Loading

Dynamometer Cards Appear to be OK
Normal 7 SPM Slows to 3 SPM Due to Rod Heavy Imbalance
Conclusions

• All wells that are produced with beam pumping units should be evaluated regularly to prevent serious gear reducer damage and failure.

• Proper planning and operating practices can prevent gear reducer failure.

• Eliminate Overloads to Reduce Operating Expenses.

• Move Weights to Minimize Torque Loading on Gear Reducers and Not Exceed Gear Reducer Load Rating.

• Balanced Operation Minimizes Energy Cost.

• Balanced Operation Minimizes Prime Mover Requirements.
QUESTIONS?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.