New Single Well Gas Lift Process Facilitates Fracture Treatment Flowback

William G. Elmer, P.E. EOG Resources, Inc.
Introduction

- Current completion trend in shale resource plays is stimulation with 3-4 million gallons of water. (Palish, 2008; Gaudlip, 2008)

- Since energized fluids not used, wells often load up after less than 15% load recovery
 - Gas lift is common remedy: high flowrates with sand capability
 - When gas pipeline available, will utilize “buy-back” meter to purchase gas from pipeline, costing $30,000 plus gas used.
 - When pipeline not available, normal alternative is expensive nitrogen membrane generator or bulk liquid nitrogen
Problem Description

• When pipeline or buyback meter not available, once-through Nitrogen gas lift has several drawbacks
 – Cost
 • Membrane typically ~ $8,000 per day
 • Vaporizing liquid nitrogen ~ $12,000 per day
 – Poor measurement of formation gas contribution
 • Difficult due to blending with Nitrogen of uncertain volume
Recommended Solution: Recycle the lift gas

- Fill system with a suitable lift gas then recirculate it with a gas lift compressor in a closed loop system

- Set up compressor engine to operate on commercial propane supply, and start engine via air compressor

- Because of fluid slugging, utilize a low pressure gas receiver to maintain steady state flow to the compressor
Primary Challenges

- Cost effectively fill the system with lift nitrogen or natural gas
- Prevent loss of lift gas
 - Liquid dump valves may hang open
 - Two on separator, four on compressor
 - Compressor losses
 - Compressor rod packing leaks
 - Compressor blowdown losses
- Backup lift gas provision in the event of loss
Solutions to Filling System

• How much lift gas is needed to fill system (to 1000 psig)?
 – 2-3/8” x 4-1/2” annulus: 3.9 MSCF per 1000 feet
 – 2-3/8” x 5-1/2” annulus: 7.1 MSCF per 1000 feet
 – 2-7/8” x 5-1/2” annulus: 6.1 MSCF per 1000 feet

• Assuming first gas lift valve at 2000 feet, need between 8 and 15 MSCF to fill the annulus and surface lines
Capture Produced Gas During Initial Flowback

• *Discovery* of “Dissolved Gas” presence
 – Significant quantity of fine bubbles observed in flowback tank

• “Too small to measure” say well testers
 – Measured using low pressure receiver tanks/ Boyles law
Capture Produced Gas During Initial Flowback

• Methane is soluble in water?

YES – More so than most would believe

– Literature from 1951 reports on solubility of methane
 – “Phase Equilibria in Hydrocarbon-Water Systems”
 – Written by O.L. Culberson with Gulf Oil, and J.J. McKetta, Jr. with the University of Texas Chemical Engineering Dept.
 – Published in AIME Petroleum Transactions Vol 192, 1951
Volumetric Solubility of Methane in Water

- Literature predicts 12 ft3 per barrel for EOG’s Barnett conditions

FIG. 5 — VOLUMETRIC SOLUBILITY OF METHANE IN WATER.
Capture Produced Gas During Initial Flowback

- Although literature depicts solubility of 12 ft\(^3\) per barrel, actual “captured” gas was half this amount once gas depressurized to surface conditions.

- Hypothesize that frac water not in contact with gas long enough to fully saturate, hence measurements of only 6 ft\(^3\) per barrel were repeatedly observed.
Capture Dissolved Gas During Initial Flowback

- **2000 barrels flowback water yields 12 MSCF**
 - This volume normally recovered in first 24 hours
 - Adequate to fill system with lift gas if collected

- **Utilize low pressure storage receivers while compressor runs in automatic bypass**
 - Automatic bypass closes when receiver pressure rises, and opens when receivers pulled down
 - Controlled by simple off-the-shelf electronic high-low safety system pilot
Pilot Test Low Pressure Gas Storage Receivers
Alternate Sources for Lift Gas

• **Fill With Nitrogen Bottles**
 - Available in 12 packs of 3.6 MCF each from welding supply house at low cost
 - Six twelve packs yields ample 21 MSCF

• **Drain into casing directly to fill, or into low pressure storage receivers**
Alternate Sources for Lift Gas

- **Fill With Nitrogen From Membrane Unit**
 - Arrange for hourly rate for nitrogen membrane unit instead of daily rate
 - Establish gas lift using nitrogen, and fill surface vessels
 - Once gas lift process operating smoothly, with nitrogen being recycled, release membrane unit
Solution to Loss of Lift Gas

- Operating practices can minimize the loss of lift gas
 - On compressor shutdown, shut-in well to prevent well from blowing down to flare
 - Gas strung up tubing collects below master valve
 - Available for re-injection on start up
Solution to Loss of Lift Gas

• Diligence
 – Make sure level controllers working correctly
 – Make sure trim in dump valves does not leak
 – Compressor rod packing in good condition
Solution to Loss of Lift Gas

• Despite good people and equipment, operating problems will occur, requiring a solution for recovering from lift gas loss
 – Produced gas or surplus nitrogen onsite storage needed to recharge closed loop system
 – Use high pressure receiver to store this produced gas
 – Fill this receiver with dissolved gas or nitrogen from bottle 12 packs or membrane unit
High Pressure Receiver Design Criteria

- Simplicity - No pressure or level controllers, just storage volume
- Must not collect condensate and water
- Easily moved and hooked up
- At least 1440 psig rating compatible with typical wellsite compression
High Pressure Receiver Version 1.0

- Eleven 8-5/8” x 25 foot long tubes arranged stairstepped
 - Capacity of 17.5 MSCF at 2200 psig
 - Capacity of 9.2 MSCF at 1350 psig
 - Gas enters top tube, leaves lowest tube

- Advantages:
 - Superior design for storing at high pressure

- Disadvantages:
 - Expensive
 - Holds 42% less gas than pair of 36” x 10’ separators at 1350 psig
Gas Capture Trailer Version 1.0

High Pressure Receiver – 8-5/8” tubes
Low Pressure Receiver – Two 1000 gallon tanks
Air Compressor receiver – 120 gallon tank
High Pressure Receiver Version 2.0

- Pair of 36” x 10’ horizontal 1440 psig vessels with bottom entry
 - Capacity of 15 MSCF at 1350 psig
 - Capacity of 11 MSCF at 1000 psig
 - Built of readily available separator materials
- Advantages:
 - Easy to mount on trailer
 - Less expensive due to standard material
- Disadvantages:
 - Unable to fill to 2200 psig for nitrogen storage
Gas Capture Trailer Version 2.0
Gas Capture Trailer Version 2.0

Features

• High Pressure Receiver – Two 36’ x 10’ Vessels

• Low Pressure Receiver – Two 1000 gallon tanks

• Air Compressor receiver – 120 gallon tank

• Control valves and process controllers
Conventional Gas Lift Flow Diagram

Pipeline provides:
- Lift gas
- Compressor fuel
- Removal of excess gas
Gas Recycle Flow Diagram

Pipeline replaced by:
- Low pressure receiver
- Pressure relief valve
- Flare stack
H. Youngblood #1H Fracture Flowback Data

- Flows without gas lift for 2 days
- Gas collected in 21 hours on day 2
- Gas lifted for 36 hours on day 3 and 4
H. Youngblood #1H
Fracture Flowback Data

- Pressure low during gas collection
- Once lifting, gas used for fuel / reserve
- Pressure steady once well turns to gas

![Separator Pressure and Injection Rate Vs. Time](image)

- Steady gas flare
- Continuous gas injection
- Gas collection with routine injection
- Gas collection with equipment purging
- No gas collection

Separator Pressure, psig

Inj. Rate MCFPD

Time, hrs

Feb. 23 - 26, 2009

2009 Gas Well Deliquification Workshop
Denver, Colorado
H. Youngblood #1H Fracture Flowback Data

- During collection, gas displaces fluid, elevating pressure
- Steady once gas reaches first valve
- Other valves never used once well “turns to gas”
Gas Capture/ Recycle Project Summary

• Recommended Solution for stranded wells that need artificial lift:

Recycle the lift gas instead of buying once-through Nitrogen

 – Fill system with Dissolved Gas or Nitrogen, then recirculate the same gas using a conventional gas lift compressor

 – Provide low pressure receivers to:
 • Collect Dissolved gas
 • Act as surge tank due to varying rates that lift gas returns
Gas Capture/ Recycle Project Summary

- Provide high pressure receiver to store ample recharge gas in the event of:
 - Lift gas loss due to leak
 - Compressor shutdown

- Set up gas lift compressor to operate on propane, and start using air compressor
Gas Capture/ Recycle Project Summary
The recommended solution for stranded wells needing gas lift to unload fracture treatment fluids

• Potential Benefits
 – Allows extended well testing to help quantify the risk of laying an expensive pipeline (have tested three wells in excess of 30 days)
 – Facilitates expansion (outside the Barnett) of the completion practice of water fracs without expensive energized fluids (CO2 / Nitrogen)
 – Same concept can be used for single well gas lift installations, only using permanent equipment
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Gas Capture/ Recycle Project
Propane Fuel System

- Compressor fuel challenge
 - Normal usage of 20 MCFPD not possible with GLR of 6!
 - Plumb in pair of 500 gallon propane tanks to provide fuel source
 - When well starts making gas, can switch from propane
- Propane contractor moves tanks from job to job for EOG