AUTOMATED HIGH PRESSURE, HIGH TEMPERATURE FOAM COLUMN TESTING APPARATUS

Dr. Marek Pakulski
BJ Services, Tomball, TX
mpakulski@bjservices.com
NEEDS AND EXPECTATIONS

• Deeper wells - higher bottomhole temperature
• Variable volume of condensate associated with gas production
• Good foamer for deliquification
 – produces low viscosity “wet” foam
 – compatible with brine, condensate, additives and contaminants
 – withstand high temperature and pressure
 – cost effective
FOAM TESTING

- ASTM methods and modifications
- Blenders
- Columns
- Every supplier and most end users have their own bench test method
- None of published methods provide objective and quantitative results at a true gas well environment
SIMPLE BLENDER TEST

Foam Test:
Water
Foamer
Condensate
100 ml liquid
RT, 20 sec.,
T1/2, vol.
Static,
Limited
Temp.
COLUMNS

200 ml brine
HT, Dynamic
N₂ 1 L/min
20 ml cond. =
0.2 mol. C₅ =
6 L vapors

Quantitative
Ambient T
Quantitative comparison of three foamers

![Graph comparing weight over time for three foamers. The x-axis represents time in minutes from 0:30 to 5:00, and the y-axis represents weight in grams from 0 to 160. Three lines represent different foamers, each with a distinct color and symbol.]
NEW CONCEPT OF A FOAM TESTING MACHINE

- Move a field test to the laboratory
- Create a gas well environment that mimics production dynamic conditions below critical velocity gas flow
- Measure foaming agents efficiency by the volume of fluid retained in the well. All liquids and gas introduced into the bottomhole must came out through the top - no drowning.
Schematic Diagram of Foam Transport Column

- 3/4" POLISHED
- Heated
- 15 ft high
- HT 500°F
- Hp 600 psi (5000 psi hardware)
- PC control

GAS

\[\Delta p \]

FOAM OUT

BRINE & FOAMER

OIL

Feb. 23 – 26, 2009

2009, Gas Well Deliquification Workshop
Denver, Colorado
Prescribed flow schedule automatically executed
FTC DATA

• Dynamic parameters: \(\Delta p = f(\text{liquid rate, gas rate, foamer quality and conc.}) \) four data strings to visualize

• Coleman’s eq.: \(V_c \approx 22 \text{ ft/sec} \) (77 L/min, \(N_2 \), if no foam), 3x less expected for foamer solutions

• Try and error testing to find flow rates giving the best response differentiating products and concentrations
 liquids: 10 - 100 ml/min
 nitrogen: 0.5 - 20 L/min
3D plots
\[\Delta p = f(\text{gas flow, FM conc.}) \]
\[\Delta p = f(\text{gas/liquid, foamer}) \]
Standardized conditions

- Flow below critical velocity determined experimentally, best response to changes
- \(N_2 \) 1 L/min std (0.4 L/min at 50 psi/90°C = 0.11 ft/sec), natural gas can be used after some safety upgrade
- Brine 40 ml/min
- Hydrocarbon 0 or 2 ml/min (5%)
- Equal price 0.1 c/L and 0.3 c/L
- Tests can be customized
Typical flow schedule

<table>
<thead>
<tr>
<th>Gas flow</th>
<th>Cond.</th>
<th>Brine + foamer</th>
<th>Time</th>
<th>Averaged data</th>
<th>Test type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>40</td>
<td>0-20</td>
<td>last 20 pts</td>
<td>Dynamic</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20-25</td>
<td>last 10 pts</td>
<td>Static</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>40</td>
<td>25-40</td>
<td>last 20 pts</td>
<td>Dynamic</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>40-45</td>
<td>last 10 pts</td>
<td>Static</td>
</tr>
</tbody>
</table>

Temperature and pressure set beforehand. Software executes the prescribed flow steps and saves data. Graphs are generated automatically.
\[\Delta p \] converted to brine column height and deliquification %

Graph: Water retain, 10 sec sampling freq.

- **X-axis:** Time, min
- **Y-axis:** Water column, inch

Key:*
- Water column, low center
- Water column, high center

Legend:
- Blue line: \[h, \text{low cent} \]
- Pink line: \[h, \text{high cent} \]

Timeline Events:
- Column filling
- Burps
- Flow
- Equilibrates
- Static hydrocarbon in
- Dynamic
Foam results in brines

Vertical Foam Test, Synthetic Well Brine 3.5% TDS, cost 0.1 and 0.3 c/L
WHAT CAN GO WRONG

• FOAMER OVERDOSE produces viscous “shaving cream” type foam. Foam friction recorded as false brine retain.

• CORROSION! HT and divalent cations SS 316 is not good enough

• SCALE! carbonates, sulfates, phosphates
FOAMER OVERDOSE = foam friction in the picture

Foam Transport Column,
Foamer 5524 in 3.5% TDS Brine

- % deliq. static
- % deliq. dyn.

Foamer conc, ppm

Deliq. %

Feb. 23 – 26, 2009 2009, Gas Well Deliquification Workshop
Denver, Colorado
Residual phosphates from CI and/or SI deposit on porous titanium gas sparger

\[Ca_3(PO_4)_2 + M_m \]
Foam Transport Column

SUMMARY

- Capable of testing foaming surfactants performance at gas well conditions.
- Delivers quantitative objective results
- Unique product development tool eliminating potential costly mistakes
- Testing foaming surfactants at well conditions assesses their genuine foaming efficiency; hence, assists end users in selecting the best foaming agents for particular downhole conditions
FTC FULL STORY

• Part 1: this presentation
• Part 3: TBA, SPE, Correlation of Laboratory and Field Foam Assisted Well Deliquification Results, in cooperation with a customer
OUR TESTING IS MORE SOPHISTICATED NOW
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.