Pressure-Drop Predictions in Tubing in the Presence of Surfactants

Sandip Soni and Mohan Kelkar, University of Tulsa
Ciro Perez, Newfield Exploration Co
Outline

• Introduction
• Background
• Data Gathered
• Approach
 – Assumptions
 – Conventional models
 – New Drift flux model
• Results
• Summary
• Recommendations
Introduction

- Foam flow is the most suitable artificial lift method for many tight gas wells.
- No correlation exists for pressure drop prediction in foam flow.
- Need a model to correctly predict the rate-pressure drop relationship under foam flow conditions.
Background

• Vendors are providing the most appropriate surfactants by conducting lab tests which include:
 – Foam stability (how quickly it dissipates)
 – Liquid carrying capacity
 – Type of surfactant
 – Concentration
Background

- The current methods to calculate the critical rate and pressure drop are based on Turner’s equation and dispersed droplet drift flux model (by assuming droplets with reduced liquid density)
- In reality, wet foam might have liquid continuous and gas discontinuous flow; therefore, Turner’s equation is not appropriate
Data Gathered

- **FIELD DATA:**
 - Numbers of Wells – 6
 - Numbers of Data Points – 570
 - Types of Surfactant – No information
 - Interfacial tension – no information.
 - Gas Flow Rate: 150-900 Mcf /D
 - Liquid Flow Rates: 10-130 BBL/D
Assumptions

• Only gas column is assumed to be present in casing to calculate bottom hole pressure.
• Surfactant concentration is above CMC.
• The same surfactants is used in all wells. The surface tension is constant for all the wells, and assumed equal to 2.0 Dynes/cm.
• Water will be the only produced liquid, also assumed incompressible.
Assumptions

- Surface tension is independent of temperature.
- The viscosity of the liquid, 0.95 CP for all wells. The mixture viscosity is calculated based on literature correlation.
- The temperature gradient along the well bore is 0.0143 °F/ft and surface temperature is 60 °F.
Conventional Approaches

- Ansari Mechanistic Model
 - Ansari flow pattern model forecast slug flow for most data points
 - Model pressure drop is compared with casing observed pressure drop

\[\Delta P_{cal} = P_{Cal} - P_{wh} \]
\[\Delta P_{obs} = P_{obs} - P_{wh} \]

- Result
 - Over prediction of pressure drop.
Conventional Approaches

![Graph showing data points and a line of best fit.](image-url)

- **ΔP_{Obs.}** vs. **ΔP_{Cal.}**

- The graph displays a scatter plot with observed and calculated pressure differences. The data points are distributed around the line of best fit, indicating a correlation between the observed and calculated values.
Conventional Approaches

• Homogeneous Model
 – No Slip hold up.
 – Viscosity based on mixture calculations
 – Better comparison than mechanistic model.

• Result
 – Indicates the possibility of slippage in flow.

\[\lambda = \frac{V_{sg}}{V_{sl} + V_{sg}} \]
Conventional Approaches

Conventional Approaches

Homogeneous Model

\[\Delta P_{\text{Obs.}} \] vs \[\Delta P_{\text{Cal.}} \]

- Obs. Press. Drop.
- Cal. Press. Drop

Feb. 23 - 26, 2009
2009 Gas Well Deliquification Workshop
Denver, Colorado
Conventional Approaches

• Slippage Model
 – Slippage velocity
 \[V_s = V_g - C(V_m) \]
 – Modified bubble rise velocity by Zuber and Hench, 1962.

\[
V_s = 1.53 \left[\frac{g \sigma_L (\rho_L - \rho_G)}{\rho_L^2} \right]^{1/4} (1 - \alpha)^n
\]

\[
1.53 \left[\frac{g \sigma_L (\rho_L - \rho_G)}{\rho_L^2} \right]^{1/4} (1 - \alpha)^{0.5} = \frac{V_{sg}}{\alpha} - 1.2(V_m)
\]

– Hatschek (1911) Foam Viscosity Model/Deshpande (2000) friction factor model used

• Result
 – Over predicts the pressure drop.
Conventional Approaches

Conventional Slippage Model

![Graph showing Conventional Slippage Model]

- \(\Delta P_{Cal} \)
- \(\Delta P_{Obs} \)

- Obs, Press. Drop
- Cal, Press. Drop
Basic Drift Flux Model

• In foam flow, with fully plug flow velocity profile, Slip velocity is given by,

\[V_s = V_g - (V_m) \]

 – Gas hold up is calculated by,

\[1.53 \left[\frac{g \sigma_L (\rho_L - \rho_G)}{\rho_L^2} \right]^{1/4} = \frac{V_{sg}}{\alpha} - (V_m) \]

 – Zuber and Hench modification not used

• Result
 – Significant improvement but still trend is not properly predicted
 – Over prediction at lower pressure drop and lower prediction at higher pressure drop.
Basic Drift Flux Model

![Graph showing the relationship between observed pressure drop (ΔP_{obs}) and calculated pressure drop (ΔP_{cal})]
Modified Drift flux Model

• With similar surface tension
 – Shear effect of wall on fully plug velocity profile is incorporated.
 – The gas hold is calculated using,

\[
1.53 \left[\frac{g \sigma_L (\rho_L - \rho_G)}{\rho_L^2} \right]^{1/4} = \frac{V_{sg}}{\alpha} - 1.03(V_m)
\]

• Result
 – Better prediction.
 – Prediction depends on individual well.
Modified Drift Flux Model

Wells With Similar Surface Tensions

\[\Delta P_{\text{Cal.}} \]

\[\Delta P_{\text{Obs.}} \]

- WELL 1
- WELL 2
- WELL 3
- WELL 4
- WELL 5
- WELL 6
Modified Drift Flux Model

- With different surface tension for each well representing different rise velocity
 - No surface tension details are available
- Result
 - Significant improvement in Prediction.
 - Defines significant effect of surface tension on bubble rise velocity and pressure drop prediction.

<table>
<thead>
<tr>
<th>Well</th>
<th>Surface Tension in Dyne/Cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL 1</td>
<td>4</td>
</tr>
<tr>
<td>WELL 2</td>
<td>1</td>
</tr>
<tr>
<td>WELL 3</td>
<td>0.01</td>
</tr>
<tr>
<td>WELL 4</td>
<td>0.5</td>
</tr>
<tr>
<td>WELL 5</td>
<td>0.4</td>
</tr>
<tr>
<td>WELL 6</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Modified Drift Flux Model

Wells With Different Surface Tensions

\[
\Delta P_{\text{Obs.}} \quad \Delta P_{\text{Cal.}}
\]

WELL 1 WELL 2 WELL 3 WELL 4 WELL 5 WELL 6
Summary

- Drift flux model predicts better pressure drop compared to conventional models.
- For frictional pressure drop calculation, non-Newtonian behavior of foam for viscosity calculation needs to be considered instead of simple mixing rule.
- Additional information about bubble rise velocity and mixture viscosity can significantly improve the model.
Recommendations

• In addition to pressure drop, knowledge about foam quality and retention of liquids needs to be collected. This information is typically available from vendors.

• Viscosity correlation for foam needs to be improved.

• Additional field data under more varied conditions need to be collected to expand the range of correlation.
Acknowledgement

- The authors are grateful to Newfield Exploration for financial support and permission to publish this Information.
Questions ?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.