Problems - Investigation of Sucker Rod Lift Problems

John Sparks
Ed Delgado
Lynn Rowlan
Introduction

1. Investigate Operational Problems

2. In Different Wells

Using:

- Dynamometer Instrument
- Fluid Level Instrument
Investigation of Well Problems

1. Drop in Production
2. Pump Is Starving
3. Well is Pounding Fluid and Tagging Hard
4. Pump Displacement & in-Tank Not Close
5. 83% of Surface Stroke lost to Rod Stretch
6. Hole in Tubing
7. Sticking Downhole on Upstroke
8. Damaged Pumping Unit
Investigation of Well Problem: *Drop in production*

Upon Arrival

- Well had High tag somewhat like a Fluid Pound
- Shot Fluid Level ~ Fluid Above Pump Intake
- Dynamometer Indicated Well was Pumping Off, but another Fluid Level Showed Fluid Above Pump
- Shut Well down for 3 hours
- Higher Fluid Level
- Pump still pounding fluid
This fluid level was acquired after leaving the unit down 2 hours and 45 minutes. Shot fluid level just before turning the well back on.

2078 Ft Fluid Above Pump
Load Data Shows: NO PUMP FILLAGE
NO Flow Into Pump, Conclusion: Pump Is Starving; Mud Anchor Probably Full

Pump Is 13.5% full, most of liquid fillage from tubing fluid slippage between Plunger and Barrel

3000 Lbs Tag
Investigation of Well Problem:
Well is Pounding Fluid and Tagging Hard
Tagging Hard for longer than 1 second
Well is Pounding Fluid and Tagging Hard

94\% Pump Fillage
1000 Lbs Tag
Well is Pounding Fluid and Tagging Hard

May want to change the sampling speed from the default 30 samples per second to 240 samples per second to 240 samples per second.

@ Default 30 samples per second sampling speed the tag is smoothed out ~ -2000 lbs

Notice that this tag occurs 6.0 inches from the bottom of the stroke.

Well should be re-spaced and 10.47 SPM reduced!
Found Well Running And With A Severe Fluid Pound, Producing Severe Vibration In The Rod String.
Investigation of Well Problem: Pump Displacement not close to BBLS in Tank

40 BPD in Tank?

129 BPD

88% Pump Fillage
Pump Displacement 129.3 BPD not close to 40 BBLS measured in Tank

Too Low, TV Leakage Rate 17.5 BPD
More Research Needed in Pump Slippage Calculations

\[Slippage = \left[(0.14 \cdot SPM) + 1 \right] 453 \frac{DPC^{1.52}}{L\mu} \]

Inputs to Pump Slippage Calculations

- D = Plunger Diameter (inches) 1.5
- P = Pressure Differential 1587
- C = Clearance (inches) 0.005
- \(\mu \) = Fluid Viscosity (centipoise) 1
- Plunger length (inches) 48
- Strokes per Minute 8.07

Traveling Valve Test Leakage:
Leakage Rate 17.5 BPD

Patterson HF Calculates:
Slippage Rate 15.2 BPD

Pump Displacement – Production in Tank:
129.3 – 40 = 89.3 BPD
Slippage Rate 89.3 BPD
Investigation of Well Problem: 83% of Surface Stroke lost to Rod Stretch
After Hot Water Treatment +100 BPD

- Calculated Fluid Load Max: 9194 lb
- Polished Rod Power: 8.4 HP
- Stroke Per Minute: 5.83
- Pump Card HP: 7.5 HP
- Pump Motor Eff.: %
- Pump Displacement: 137.5 BBL/D
- Pump Intake Pressure: 904.3 psi (g)
- Damp Up: 0.07
- Damp Down: 0.07
- Tubing Head Pressure: 100.0 psi (g)
- Effective Plunger Stroke: % 66.1 in
- Stroke: 33
Investigation of Well Problem:
Hole in Tubing & Sticking During Upstroke

Load to Lift Fluid to Surface?
Load Spike as Plunger Stops
Shot Fluid Level Down Tubing
Hole in the Tubing Below Liquid Level

1) Shot well 3 times, 1 down casing, 2 down tubing
2) All three shots same depth within 150 feet
3) Pump running entire 44 min. while shot down tubing
4) Tubing and Casing Psi equal and liquid level equal
Sticking Downhole or Damage Pumping Unit

Plunger Stops for 1 Second while Polished Rod moves up 17.15 inches. Applying a 2315 Lb Force, before plunger starts to move. Plunger Position MUST become Flat OR Pump not Sticking!

Move Up 17.15 “

1 Sec.

Plunger Position MUST become Flat OR Pump not Sticking!
Investigation of Well Problem: Sticking Downhole or Damage Pumping Unit

Load Spikes Due to Damaged Pumping Unit
Sticking Downhole or Damage Pumping Unit

Instantaneous SPM Spikes match Polished Rod Load Spikes, IF changing speeds are due to Surface Problem
Conclusions

1. Dynamometer and Fluid Level Analysis Used to Identify Many Problems

2. Identifying the Cause and Solution to the Problem can be Difficult to Determine

3. Experience Helps Trouble Shoot the Well

4. Must Spend Time to Get Representative Data (Office and Field)

5. Effective Communication with Operator is Critical in Correcting Problem
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Plunger Velocity Should be used to Calculate Pump Slippage

- $\text{Vel}_B = 17.57 \text{ in/sec}$
- From A to B
- $\text{Plunger Moved } \sim 8''$
- $\text{Vel}_C = 9.14 \text{ in/sec}$
- From C to D
- $\text{Plunger Moved } \sim 6''$

From B to C?