Real-time Gas Lift Optimisation using Production Universe RTO

Filip Stroobant

Shell Global Solutions International BV
Outline

• Production Universe – What is it?
• Real-Time Optimization
 – Introduction
 – Functionality
 – Key Users
 – Modeling Framework
 – Examples
• Key elements for success
Production Universe: What is it?

- **Real Time Monitoring (RTM)**
- **Real Time Optimization (RTO)**

- **Real Time Production Surveillance & Optimization**
 Real time oil/gas/water rates to identify well performance and optimization opportunities

- Data driven, non-linear modeling tool providing on-line surveillance, reconciliation and diagnostics for individual wells.

- **Modeling & Optimization tool specifically developed for Oil & Gas industry (reconciliation / well testing)**

- Award-nominated, proprietary Shell technology
Real-time Surveillance & Optimization with Data Driven Models

- More sustainable in production operations:
 - Data driven models naturally from standard and disturbed well tests
 - Use std well instruments, e.g., tubing head & flowline pressures, liftgas rates
 - Only need repeatability, not absolute accuracy
 - Minimal dependence on assumptions & parameters
 - Daily validation & reconciliation against export meters

- Need for disturbed well tests / accurate well test data
Real-time Optimisation: Introduction

- Optimise production revenue by pushing your platform/wells to full potential in real-time.
- Use of data-driven models; flexible & easy to maintain.
- Automatic set point application; apply the set points in the fields (after verification).
- Automatic scheduling/triggering of the optimisation; optimise when the need is highest.
Real-time Optimisation: Functionality

- Makes full use of PU Real-time Monitoring (RTM) models and functionality.
- All well types are supported.
- Ability to tailor objectives, constraints and optimisation preferences.
- Ability to model the interaction between wells.
- Different types of validation and set point application mechanisms possible.
 - Manual
 - Semi-Automatic
 - Automatic
Real-time Optimisation: Key users

• Production Programmers / Operators
 – Automatic management / operational optimisation of gas lift and production choke settings, particularly as production environment changes.

• Petroleum Technologists, PSO Engineers
 – Tracking the performance of production facilities such as well gas lift utilization curves, sensitivities of production to bulk separator pressures, header pressures.

• Super Users
 – Monitor, check and maintain the application as required, or when requested by the other users.
Real-time Optimisation: Model framework

*optional
Real-time Optimisation: Model framework

Optimal Liftgas setting

Well Net Oil Flow vs LG Flow Curve, based on real production data.
Real-time Optimisation: Example #1

- CPDP10 was the first site for deployment of RTO V1
- Simple plant, wells and optimization objectives.
- Objective: Maximize gross production.
- Processing facilities constraint / well interactions.
- CPDP10 highest gas lift efficiency in BSP.
Real-time Optimisation - Example #1

Gross Liquid Production - Jul-03 to Jan-07.
- Red – FW PU Estimate
- Blue – Ultrasonic Meter Reading

- Deployed since 2003
- Stabilized Production
- Triggered installation of new production line

Original production decline rate

Jul 03 - Manual Optimization

Aug 03 – FW PU Optimizer operational

Additional header installed
Real-Time Optimization – Example #1

- Typical Gaslift Optimization Curve
- Huge potential for increased gas lift efficiency
Real-Time Optimization – Example #1

- Total gas lift injection
- Gross production

Optimisation started

• 25 % increase in gas lift efficiency
• Resulted in more gas lift availability for other fields
Real-Time Optimization - Example #2

- Nelson Platform
- Located 200km North East of Aberdeen
- 30 platform wells, 4 sub-sea wells
- First oil in 1994 – (Enterprise)
- Shell operated since 2002
- Current export levels:
 - 6000 m3 oil
 - 0.5 Mm3 gas
- Oil exported via the Forties Pipeline System (FPS) to Sullom Voe
- Gas exported through the Fulmar gas line to St Fergus
• Well gas compressed and used for fuel and gas lift
• Other than cold start not (commercially) possible to import gas.
• Sum (max gas lift per well) > compressor capacity
• Individual platform wells have gas lift metering and controller valves
• Controller set points set in control room DCS.
• Individual wells have different gas lift response for net oil produced
• Operationally wells may be changed on/off during the course of a shift
Real-Time Optimization – Example #2

- **Control** of optimisation remains in the hands of offshore operations.
- **Optimisation boundary conditions** set by onshore process / petroleum engineers, typically in the office
- Everyone sees the **same** set of data
- Faster and quicker than existing spreadsheet solution
- Reduction of “admin” for offshore operations
- Meets all HSE and Integrity rules
“Old” Gas Lift Optimisation Process
PU-RTO Solution

- **PU Client**
- **PU Server**
- **Process Historian**
- **DCS**
- **Onshore Production Technologist**
- **Petroleum Engineering Staff** e.g. RE / PC
- **Offshore Operator**
- **New SP's**
- **Accepted Set Points**
- **Gas Rate**
- **Valve Position**
- **Wellhead and Process data**
- **Set Points**
- **Model Updates**
- **Well Modelling + Limits**
- **Optimisation Request**
- **Optimisation**
- **Trigger**

Flow:
- Gas Lift Valves & Controller
- Onshore Production Technologist
- Petroleum Engineering Staff e.g. RE / PC
- Well and Res. Limits
- Onshore Updates
- Well Modelling + Limits
- Offshore
- PU Client
- PU Server
- PU Client
- Offshore
- DCS
- Process Historian
- Set Points
- New SP's
- Accepted Set Points
- Trigger Optimisation
- Gas Rate
- Valve Position
- Wellhead and Process data
Real Time Optimization - Key Success Factors

• Technical:
 – Good quality data
 – Automatic set point application (closing the loop)

• Organisational:
 – Identify Champion in OU
 – Building competencies in OU
 – Making it part of daily business
Real Time Optimization

• Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Implementation Timeline: 2006

- **April**: Kick off Meeting including Operators
- **June**: Delivery of Product Version PU-RTO
- **Aug**: Risk Assessment and DCS work
- **Oct**: Optimise “on the Table”
- **Dec**: Final Go Live & Turn off Old system