Sucker Rod String Service Factors

Norman W. Hein, Jr., P.E., President & Managing Director, Oil & Gas Optimization Specialists, Ltd. (OGOS)

and

Russell Stevens, Manager – Technical Services, Norris
Contents

• Background on Goodman Fatigue Diagram
• Development of API Modified Goodman Diagram
• Example using the diagram
• API Service Factor (SF) and range
• Effect of SF on allowable stress
• Conclusions & Recommendations
Original Goodman Diagram (1926)
Hein & Hermanson, SPE 26558, 1993

• Provided brief history of industry efforts to modify Goodman diagram for sucker rod use

• API Task Group met in the Mayo Hotel, Tulsa, OK, in early 1960’s

• Y-intercept have safety factor of 2 reducing max to the tensile strength (T) divided by 4

• Much discussions on the apex reduction
 – Ranges of T/ 1.5 to 2
 – Resolved arithmetical average of T/1.75

• Assumed 10 million cycles fatigue life in non-corrosive environment
Resulting API RP 11BR – Modified Goodman Diagram (MGD)

![Diagram showing the Goodman diagram with equations and annotations.]

\[S_a = \left(T + M S_{\text{min}} \right) SF \]
\[S_a = \left(0.25T + 0.5625 S_{\text{min}} \right) SF \]
\[\Delta S_a = S_a - S_{\text{min}} \]

where
- \(S_a \) = maximum available stress, psi (N/mm²)
- \(\Delta S_a \) = maximum allowable range of stress, psi (N/mm²)
- \(M \) = slope of \(S_a \) curve = 0.6625
- \(S_{\text{min}} \) = minimum stress, psi (N/mm²) (calculated or measured)
- SF = service factor
- \(T \) = minimum tensile strength, psi (N/mm²)
Pk Load = 17900 lbs. Stress = 29768 psi

Min Load = 9100 lbs. Stress = 15141 psi
Modified Goodman Diagram for Grade “D” Rods, T = 115,000 psi

Rod Loading = \(\frac{29768 - 15141}{37267 - 15141} \)

= 66%

\[S_a = \left(\frac{T}{4} + 0.5625(S_{min}) \right)(SF) \]

= 37267 psi

\[S_{min} = 15141 \text{ psi} \]

Pk Stress = 29768 psi
Service Factor (SF)

- API RP 11BR MGD Allowable stress formula:
 \[Sa = \left(\frac{T}{4} \right) + 0.5625 \times S_{\text{min}} \times SF \]

- Paragraph 4.1 states:
 - “Since all well fluids are corrosive to some degree, if not 100% inhibited, and since the corrosivity of well fluids vary greatly, it is of extreme importance that the stress values determined from this diagram be adjusted by an appropriate service factor, based on the severity of the corrosion.”
 - “This service factor should be selected by each user as his experience indicates.”
 - “It could be greater than one, although normally it will be less than one, varying with severity of corrosion.”

![Fatigue Curves Diagram with Stress vs. Number of Cycles to Failure](image-url)
Usage Example with SF Applied:
Grade “D” Rods, $T = 115,000$ psi & $SF = 0.8$

Rod Loading = \(\frac{29768 - 15141}{29814 - 15141} \)

= 99.7%

\[S_{min} = 15141 \text{ psi} \]

\[S_{a} = \left(\frac{T}{4} + 0.5625(S_{min}) \right)(0.8) \]

= 29814 psi

\[Pk \text{ Stress} = 29768 \text{ psi} \]
So, is there a problem?

• By applying the SF, the allowable rod string stress may be exceeded.

• This overload would be treated by:
 – Using more expensive, higher grade rods, OR
 – Using a larger Rod String taper

• In either case, this will cost more money not only the first time, but all future expenditures for replacement rods

• Also, the larger rod string taper will probably require a larger, more expensive pumping unit too
Texas Tech University – Fatigue Testing for Amerada Hess
Recommendations from Permian Basin Operator

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>API-C (default)</th>
<th>API-D (default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-CORROSIVE</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>SALT WATER</td>
<td>.65</td>
<td>.9</td>
</tr>
<tr>
<td>HYDROGEN SULPHIDE</td>
<td>.50</td>
<td>.70</td>
</tr>
</tbody>
</table>

Permian*:
- Using C grade rods to SF of 1.35 before using D rods
- Using D rods to SF of 1.35 before going to high strength rods
- Inhibit
- Do not use case hardened rods

*from failure control in rod pump wells, SWPSC
Other Factors to Consider

- Reduction in allowable stress is slim hole couplings are used
- Reduction in allowable stress if used, inspected sucker rods are re-used
Fatigue strength, S

Gerber's parabola

Modified Goodman line

Tensile strength, S_u

Soderberg line

Static yield strength, S_y

Mean stress, S_m

Alternating stress, S_a
Conclusions & Recommendations

• The API Modified Goodman Diagram (MGD) is very conservative, originally based on compromise and WAG
• Many factors affect the fatigue life of sucker rods
• Corrosion inhibition is required for long life not only of the sucker rod string; but, surface flow lines and processing equipment, the tubing, pump and, most importantly, the downhole casing
• Since an adequate and effective corrosion inhibition program is required, applying the API RP 11BR M G D Service Factor with a value less than 1.0 adds more unnecessary conservatism
Conclusions & Recommendations (con’t)

• While some operators may apply a SF greater than 1.0 for the rod string design, this practice usually cannot be supported by sucker rod manufacturers due to implied warranty (do it at your own risk)

• Other factors such as use of slim hole couplings and rerunning used sucker rods should require the application of a SF but, most SRL well designers do not use them probably because most design computer programs do not include this information
• A joint industry program should be considered to conduct fatigue tests on coupled rods, applying current day understanding of fatigue and the factors that effect fatigue life, in order to ultimately change the MGD for rod string design
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Sucker Rod String Service Factors

Norman W. Hein, Jr., P.E.,
nwhein@prodigy.net; 432.694.3678
and
Russell Stevens,
rstevens@norrisrods.com; 432.561.8101