Modelling Gas Well Liquid (Un)Loading

Kees Veeken (NAM, Assen)
Murat Kerem (Shell, Rijswijk)
Objectives of Modelling

- **Liquid loading**
 - Improve capacity forecast to maximise nomination
 - Determine proven and expectation reserves
 - Predict end of field life i.e. abandonment date
 - Predict date that deliquification should be installed

- **Liquid unloading (a.k.a. deliquification)**
 - Determine SFR and reserves at stake
 - Generate incremental forecast to justify investment
 - Select best (sequence of) deliquification measures
 - Optimise deliquification techniques and implementation
Contents

• Objectives
• Well & reservoir model
• Abandonment pressure & ultimate recovery
• Production forecast for deliquification
• Minimum gas rate & metastable production
• Gas well unloading
• Future modelling
Well Model

- Cullender-Smith

 \[
 FBHP = FTHP + HH + FF: \\
 FBHP^2 = B \cdot FTHP^2 + C \cdot Q^2
 \]

- Forcheimer

 \[
 \text{Pres} = FBHP + DD: \\
 P_{res}^2 - FBHP^2 = A \cdot Q + F \cdot Q^2
 \]

- Turner

 \[
 Q_{min} = TC \cdot FTHP^{0.5} \cdot \text{ID}^2 / [(FTHT+273) \cdot Z]
 \]

- Abandonment

 \[
 Q = Q_{min}: \\
 P_{ab}^2 = B \cdot FTHP^2 + A \cdot Q_{min} + (C+F) \cdot Q_{min}^2
 \]
Abandonment Pressure & Reserves

UR = GIIP \(\times \frac{(P_i - P_{ab})}{P_i} \)

- **UR** = Unrecoverable Reserve
- **GIIP** = Geologic Initial InPlace Gas
- **P_i** = Initial In-situ Pressure
- **P_{ab}** = Abandonment Pressure
- **P_{res}** = Residual Pressure
- **G_p** = Gas constant

[Diagram showing the relationship between abandonment pressure and reserves.]
Compression benefit for all A
Velocity string benefit increases with A
Stimulation increases reserves.
Foam lift benefit increases with A.
Prolific Gas Well (Low A)

GIIP = 10^9 m3, $A = 4$ bar$^2/(10^3$ m3/d), 5" tubing

- **Base Case**: 77%
- **Compression**: 22%
- **Foamer**: 1%
- **Gas Lift**: 1%

Gremlin Gas Well (Low A)

GIIP = 10^9 m3, $A = 4$ bar$^2/(10^3$ m3/d), 5" tubing

- **Base Case**: 77%
- **Compression**: 22%
- **Foamer**: 1%
- **Gas Lift**: 1%

Graph:
- **Y-axis**: Gas Rate (10^3 m3/d)
- **X-axis**: Time (yrs)

Legend:
- Base Case
- Compression
- Foamer
- Gas Lift

Units:
- Gas Rate: 10^3 m3/d
- Time: yrs
- Gas Volume: 10^6 m3
GIIP = 10^9 m3, $A = 4$ bar$^2/$(103 m3/d), 5” tubing

Prolific Gas Well (Low A)

Compression/eductor most useful
Reduced scope for other measures
Tight Gas Well (High A)

GIIP = 10^6 m^3, A = 400 bar^2/(10^3 m^3/d), 5" tubing

- **Base Case**
- **Compression**
- **Foamer**
- **Gas Lift**

<table>
<thead>
<tr>
<th>Time (yrs)</th>
<th>Gas Rate (10^3 m^3/d)</th>
<th>Gas Volume (10^6 m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>37%</td>
<td>32%</td>
</tr>
<tr>
<td>8</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>12</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>16</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>20</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Tight Gas Well (High A)

GIIP = 10^6 m^3, $A = 400 \text{ bar}^2/(10^3 \text{ m}^3/\text{d})$, 5" tubing

Deliquification critical for recovery
Scope for wide range of measures
Sharing the same cake
Selection is key

Base Case: 37%
Compression: 32%
Foamer: 21%
Gas Lift: 10%
Tight Gas – Outflow Challenge

Outflow as challenging as inflow!

Gas well deliquification essential to maximise recovery for tight gas wells

2-7/8” tubing
THP 5 bar
H 100m, 1x
RF=0% if K < 10 μD

RF (%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

KH (mD.m)

0.1

1

10

100

1000

Minimum Rate Actual & Turner

![Bar chart showing the number of wells based on the actual minimum rate compared to the Turner criterion. The x-axis represents the actual minimum rate (in units) and the y-axis represents the number of wells. The bars show the following categories: <1.0, 1.0-1.5, 1.5-2.0, 2.0-2.5, >2.5. The chart indicates a significant number of wells in the 1.0-1.5 category.]
Modified Turner

Well more sensitive to pressure fluctuations at low pressure

\[y = 3.4441x^{-0.1717} \]

\[R^2 = 0.2085 \]
Turner Literature Data

- **Unloaded**
- **Loaded**
- **Questionable**
- **Success**
- **Failure**

- **Actual Gas Rate (Mscf/d)**
- **Calculated Loading Rate (Mscf/d)**
Dependency on A in Simulator

Q_{min} increases as A decreases

Well more sensitive to pressure fluctuations at low pressure

Prolific

Poor
Model Limitations

- Underestimates hydrostatic head
 - Calculated abandonment pressure too low
 - Uplift when injecting foam just above critical rate (?)
- No recharging due to tight or slow gas
 - Connected volume increases with time
 - Intermittent production
- Monobore only i.e. no wet foot across larger liner
 - Extra back pressure
- No metastable flow
Metastable Gas Production

Gas bubbles through liquid column (SPE 95282)
Stable rate 40,000 m³/d
Metastable rate 12,000 m³/d

Gas Rate
THP
BHP
Metastable Gas Production

Offshore wellhead temperature provides indication of liquid loading & metastable production
Unloading Gas Well

• Gas well unloads far below Turner criterion
• Initial unloading via piston like displacement
• Critical velocity of Taylor gas bubble 10x lower than Turner critical velocity

• Piston model
• OLGA multiphase dynamic flow simulator
Unloading Well with 7” Tubing

$Q_{min,\text{water}} \approx 4\times 10^5 \text{ m}^3/\text{d}$, $Q_{min,\text{condensate}} \approx 2\times 10^5 \text{ m}^3/\text{d}$
Volume Fraction @ 240 min (OLGA)

Q_{gas} \sim 4E4 \text{ m}^3/\text{d}
Volume Fraction @ 480 min (OLGA)

Q_{gas} \sim 4E5 \, m^3/d

Along Hole Distance from Toe (m)

Fraction (\cdot)
Future Modelling

• Liquid loading
 – Update & upgrade modified Turner
 – Resolve abandonment pressure discrepancy
 – Support multiphase dynamic modelling of liquid loading

• Liquid unloading (a.k.a. deliquification)
 – Model interaction between reservoir and well in liquid loading domain to produce better deliquification forecasts & to optimise deliquification techniques
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.