Batch Pumping – A New Method to Solve Downhole Liquid Holdup

William G. Elmer, P.E.
EOG Resources, Inc.
Batch Pumping for Rod Pumped Gas Wells

- Gas flows from casing annulus
- Liquid is pumped up tubing
- Some fluids rise with gas due to ineffective gas/liquid separation in small diameter casing
Identifying and Solving Liquid Holdup

- Problem: Casing and liner sizes smaller than 5-1/2” have an annular area that is too small for effective downhole separation of gas and liquids.
Identifying and Solving Liquid Holdup

• Problem: Casing and liner sizes smaller than 5-1/2” have an annular area that is too small for effective downhole separation of gas and liquids.

• What is happening?
 – Fluid is prevented by turbulence around perforations from falling
 – Cross-Sectional area too small to effect separation
 – Gas velocity not high enough to lift fluids, but will drag fluid
Identifying and Solving Liquid Holdup

• How to Identify?
 – Wells pumping at 15% or less
 – Wells that initially responded well to rod pumping, but dropped off over a period of several days
 – Wells that are erratic producers
 – Wells producing at rates greater than 40% of Coleman
Identifying and Solving Liquid Holdup

- Test to see if it is a problem
 - Note length of normal pumping cycle
 - Prior to start of pumping cycle, manually shut-in casing for 10 minutes. Time length of this pumping cycle
 - Note if normal pumping time changes appreciably, you have holdup
 - Open casing valve when pumpoff completed
How to Solve Liquid Holdup

• Install automated valve to perform this process
 – Pneumatic or electric powered of sufficient diameter
 – Give consideration for POC makers to add this ability to product, as well as the sale of actuated ball valves and solenoid for gas operated motor valves
How to Solve Liquid Holdup

- Install automated valve to perform this process
 - Pneumatic or electric powered of sufficient diameter
 - Give consideration for POC makers to add this ability to product, as well as the sale of actuated ball valves and solenoid for gas operated motor valves

- Field experience in East Texas suggests shut-in times of 6 to 8 minutes prior to starting pumping unit.
Separator Sizing Comparison in Comparison to Coleman Modified Mist Flow

- Conventional industry separator calculations used to determine capacity of annular area to provide separation.
- Coleman Modified Turner calculations used at same temperature and pressure using cross-sectional area of annulus.
- Coleman values on average 9 times higher than separation values.
- Conclusion: Fluid will not separate in annular area, but velocity too low to lift fluids, predicting Liquid Holdup.

2/7/8" w/ 1.90"

![Graph showing flowrate (MCFPD) vs. casing pressure (Psig)]
Separator Sizing Comparison in Comparison to Coleman Modified Mist Flow

- Conventional industry separator calculations used to determine capacity of annular area to provide separation.

- Coleman Modified Turner calculations used at same temperature and pressure using cross-sectional area of annulus.

- Coleman values on average 9 times higher than separation values.

- Conclusion: Fluid will not separate in annular area, but velocity too low to lift fluids, predicting Liquid Holdup.
Separator Sizing Comparison in Comparison to Coleman Modified Mist Flow

- Conventional industry separator calculations used to determine capacity of annular area to provide separation
- Coleman Modified Turner calculations used at same temperature and pressure using cross-sectional area of annulus
- Coleman values on average 9 times higher than separation values
- Conclusion: Fluid will not separate in annular area, but velocity too low to lift fluids, predicting Liquid Holdup

4-1/2" w/ 2-3/8"

Flowrate (MCFPD)

Tubing Pressure

25 Psig 50 Psig 75 Psig 100 Psig

Separation
Mist Flow
Separator Sizing Comparison in Comparison to Coleman Modified Mist Flow

- Conventional industry separator calculations used to determine capacity of annular area to provide separation
- Coleman Modified Turner calculations used at same temperature and pressure using cross-sectional area of annulus
- Coleman values on average 9 times higher than separation values
- Conclusion: Separation capacity between 90 and 140 MCFPD, and may be adequate.
Well A – Panola County

MCFPD

Install pumping unit

Begin “Batch Pumping”
Well B- Panola County

Begin "Batch Pumping"
Install pumping unit
Well C – Panola County

Install pumping unit

Begin “Batch Pumping”
Sales Chart! EFM a Necessity
Opportunities to Improve Batch Pumping Concept

- Increase flow period by opening casing valve before pumpoff occurs
 - Like plunger lift, a goal is to maximize flow time
Opportunities to Improve Batch Pumping Concept

• Increase flow period by opening casing valve before pumpoff occurs
 – Like plunger lift, a goal is to maximize flow time
• If adequate rathole exits below perforations, valve can be opened whenever majority of fluid has fallen past perforations
 – Purposely run extended tubing below the perforations into an extended rathole
 – Alternatively oversize pump capacity to get the fluid removed quickly, minimizing the shut-in time
Opportunities to Improve Batch Pumping Concept

• Increase flow period by opening casing valve before pumpoff occurs
 – Like plunger lift, a goal is to maximize flow time

• If adequate rathole exits below perforations, valve can be opened whenever majority of fluid has fallen past perforations
 – Purposely run extended tubing below the perforations into an extended rathole
 – Alternatively oversize pump capacity to get the fluid removed quickly, minimizing the shut-in time

• How long does it take for the fluid to fall past the perforations?
 – A good topic for another meeting
Copyright

The rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. They grant to the Gas Well Deliquification Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), the following rights to:

- Display the presentation at the Workshop.
- Place is on the www.alrdc.com web site for use by those who attend the workshop.
- Place in on a CD for purchase by those who attend the Workshop.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Gas Well Deliquification Workshop Steering Committee members, the supporting organizations and their companies, the author(s) of this Technical Presentation or Continuing Education Course, and their company(ies), provide this presentation and/or training at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.