Dual Stage Plunger Lift
Applications

William Hearn, Weatherford
Don Whisonant, Marathon Oil
Wamsutter, WY - Greater Green River Basin
Wamsutter Field Description

- 170 of Marathon operated wells.
- Marathon operated production ~ 40 MMSCFD.
- Well age: 50 years to newly drilled.
- Standard completion – 4½” casing / 2 3/8” Tubing.
- To keep wells unloaded: typically add Foamers or plunger lift prior to depletion to critical rate.
- Wellhead pressure ranges from 80 - 500 psi.
- Gas rate ranges from 40 to 2300 MCFD, LGR from 10-50 BBLS/MMSCFD.
Wamsutter Reservoir Description

• Production from Almond & Lewis Formations (7,000 - 10,500’).
 - Lewis: shallowest, with lower volume, higher perm, lower pressure
 - Almond: deeper with higher volume, lower perm, and higher pressure.
 - 350-1900 ft gross interval.
 - Tight Gas
 - (Porosity: 8 - 14%.
 - Permeability: 0.002 – 0.1 md.
Typical Issues of Problem Wells

- High Flowing Tubing Pressure for Plunger Lift
- Low immediate pressure buildup once depleted. (1-4 hour builds)
- Casing pressure buildup limited by low pressure or depleted zones.
- Significant operator time required to keep well unloaded.
- Erratic production even on plunger lift.
Example of a Problem well
Siberia State 5-16

• Gross Interval 1261’
• Top Lewis Perforation: 9,349’
• Bottom Almond Perforation: 10,610’
• EOT @ 10,457’ (Middle of Almond)
• Flowing Tubing Pressure: 315 psi.
• +/- 100 Mscfd, 1 BLHCD, 3 BWPD.
Specific Issues to the SS 5-16

- Gas rate between 60-120 Mcf/day averaging 80 Mcf/day
- Significant venting
- Fluid production between 2-10 bbls/day of fluid
- Line Pressure of 400 psi
- Ideal production should be around 110 Mcf/day with 4 barrels of fluid.
- Additional 30 minutes per day of operator time.
Example of a Problem well

Gas Rate vs Time

Change from single stage to dual stage plunger
Example of a Problem well
Siberia State 5-16
Dual Stage Plunger
What is it?

• By adding a second set of plunger equipment and “staging” your lift cycle you essentially produce the well with two plunger systems.

• The system includes from bottom to surface

1. A typical bottom hole bumper spring
2. A solid ring plunger for the bottom stage
3. An ILA (see right) made up of two bumper springs (one facing up/one down) a sealing component, a check valve and a tubing stop.
4. Another plunger to lift for the upper stage (usually a double pad)
5. A Lubricator to receive the upper plunger.
SS 5-16 Specific Issues
Single Stage Conventional Plunger System

• Foss and Gaul Calculations for Single Stage:
 – Calculated Casing Pressure 1177 psi
 – Fluid Lift Per Cycle 1.43 bbls
 – Gas Used Per Cycle 19.6 Mcf
 – GLR Required 13.75 Mcf/bbl
 – GLR Actual 13.75 Mcf/bbl
Foss and Gaul single stage calculations indicate the following with the GLR available and the given line pressure:

- Casing pressure required: 1177 psi to lift 1.28 bbls per cycle, 6 times a day to keep the well unloaded.
- The well will operate on the edge, any fluctuation would cause a missed arrival or a shortage of gas.
SS 5-16 Specific Issues
Dual Stage Plunger System

• Foss and Gaul Calculations for a Dual Stage System:
 – Calculated Casing Pressure 1141 psi
 – Fluid Lift Per Cycle 0.62 bbls
 – Gas Used Per Cycle 7.62 Mcf
 – GLR Required 12.34 Mcf/bbl
 – GLR Actual 13.75 Mcf/bbl
SS 5-16 Specific Issues
Dual Stage Plunger System

- Two stages with the top stage only lifting the top 70% of the well and the bottom stage lifting the bottom 30% of the well.

- Foss and Gaul indications for dual stage:
 - Reduction in the necessary GLR
 - Excess allows stabilization, near wellbore unloading, and allows for slight fluctuation in system pressure.
 - Leads to the ability to clean the well up and to smaller loads
SS 5-16 2 Stage Plunger Cycle
Rate & Pressure vs Time

Time
Rate & Pressure vs Time

Time

BWPD BLHCD MSCFD FTP CP

Summary

• Single Stage Plunger Systems were no longer keeping wells unloaded.

• A second stage was added at approximately 70% of the length of tubing.

• A consistent increased production was observed.

• Operational efficiency improved.
Project Economics

- Project cost: $5,000 for two stage installation, $22,000 initial plunger and SCADA Installation.
 - 5 wells: 250 Mscfd total increase.
 - Average Incremental increase: 50 Mscfd.
 - Low of 25 Mscfd.
 - High of 70 Mscfd.
 - Dual Stage Payout: +/- 1 month.
Considerations for Applying 2 Stage Systems:

• Wells with GLR’s below necessary pressure and volume to lift a conventional plunger system.

• Field trials indicate that dual stage decreases lift gas requirements by 1-3 Mcf per Barrel.

• Plunger Wells with missed arrivals due to lower than required gas volumes for lifting a plunger from the bottom of the well.

• Plunger Wells that shut in on arrival due to significant inflow of fluid during the lift cycle.

• Plunger wells which are depleted to the point that casing pressure builds can no longer can lift the fluids.

• Wells that have previously been considered Rod Pump Candidates.
Keys to Successful Plunger Operation

• Frequent monitoring of plunger cycle trends.
• Plunger equipment and automation is mechanically sound and functional.
• Adjustment of plunger set points for changing conditions.
• Monitoring of plunger wear and changing warn out plungers.
• Catching missed arrivals early and making adjustments.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.