The ESP Group - Dewatering Gas Well Using Submersible Electrical Motor

Peter O. Oyewole (Artificial Lift Production Engineer)

BP America Inc
What are we going to talk about?

- Introduction
- Centrifugal ESP (Conventional ESP)
- Electric Submersible Progressing Cavity Pump – ESPCP (TTC option)
- Hydraulic Diaphragm Electric Submersible Pump – HDESP
- Electric Submersible Twin Screw Multiphase Pump (ESP-TSMP)
- San Juan CBM ESP Group Field Trial
- Conclusion & Summary
Introduction

- ESP – Traditionally reserved for HIGH LIQUID RATE wells
- Application Extending to LOW LIQUID RATE gas wells
- Why?
 - Recent Technology Advancement & new products/package
 - Completing More Complex Wellbore
 (Deviated, S-shaped, Horizontal, HST, M’laterals)
 - Environmental
 - Regulation & Spacing
 - Reserve Access
 - Accelerate production

➔ Rod Problem – Wear, Rod fall etc get bigger
Introduction

- **Gain**
 - Rodless (No rod problem)
 - Install & run in complex wellbore geometry
 - Low Profile – Visibility & Under Irrigation System
 - Can handle some solid (may need desander, screen…… if applicable)

- **Limitation**
 - Electricity (Utility or Generator)
 - Prime Mover is DH (Rig work to repair motor & some pump)
Centrifugal ESP (As low as ~40BLPD)

- Low Liquid Rate Gas Well (Concerns)

 (1) Gas Interference
 - Gas locking, Cavitation

 (2) Downthrust wear - Pump
 (Low liquid rate = operating in downthrust)

 (3) Heat damage - Motor
 (Reduced conductive cooling)
Gas Interference

(1) Gas Separation
(2) Gas Handling
(3) Tapered Pump (not common)

- Require some liquid production to work
- Some gas handler may require a lot more liquid mix to work
- Gas Separator & Gas Handler Combo is possible in an application.
Gas Separation

(1) Sump Pump – Best gas separator
- (w/out Shroud@ shallow/low BHT, w/shroud on deeper/high BHT)

(2) Static Gas Separator
- (Bottom Intake Feeder for Horizontal wells)

(3) Rotary Gas Separator
- (U got the speed/RPM)

(4) Vortex Gas Separator
- (Diffuser is added)
Gas Separation

Static GS

XGS & Rotary GS

Rotary GS

Poseidon™ (SLB)

Bottom Intake Feeder

2008 Gas Well Deliquification Workshop
Denver, Colorado
Gas Handling

- Before the main pump. Btw the gas separator/intake and the main pump

 (1) Advanced Gas Handler (AGH)™ – Schlumberger
 (2) Multi Vane Pump (MVP)™ – Centrilift
 (3) XGC™ – Wood Group ESP
 (4) Poseidon™ – Schlumberger
Gas Handler

- Increase Pressure & reduce gas volume – (Gas law)
- Recirculation path or split vane design - keep gas bubble from accumulating
- Homogenize the gas liquid mixture – for pump stages to handle
- Reduces/break gas bubble
- Impact high momentum energy to the fluid by design
- Compression chamber - Compress free gas back in solution – gas in water solubility ???
- Axial flow by design
Downthrust wear - Pump

- Stabilizers sleeves
- Balance Circulation ring
- Shimming (compression pump are not Low Flow rate)
- Thrust Washer materials
Heat damage-Motor

- Shroud Motor landed @ or below perf
- Derated Motor & Variable Rated Motor - (↓ temp rise & ↑ rated temp)
- Motor Temp Control Cut-off – With DH sensor w/thermocouple - monitor motor winding temperature
- Recirculation Pump
- Surface water injection through cap string
Electric Submersible Progressing Cavity Pump – ESPCP (TTC option)

- PCP + Gear Reducer + Submersible Motor
- PCP
 - Handle lower liquid rate than centrifugal
 (As low as ~20BLPD)
 - Additional solid handling capability
Three run was required.
Through Tubing Conveyed

- Motor, Gear reducer, Seal w/Tubing & Intake X-over
- Base coupling locator, flex shaft, PCP, tubing Pack-off and Anchor - installed & removed
- w/slickline, E-line, CT, Jointed rod, Corod
- Why?
- PCP the weak link due elastomer limitation can be easily removed when failed without a full rig workover
- Adequate Motor Protection is required w/motor temp rise cut out.
Hydraulic Diaphragm Electric Submersible Pump (HDESP) - SmithLift

- Hydraulic Diaphragm + Electric Motor
- Designed specifically for low liquid volume gas wells (as low asmotor cooling)
- One Rotor & Stator –highly efficient system @ low liquid rate
- Positive displacement: double acting diaphragm with check valves
- Handle gas better…
- Can operate @ pump off ….Required very low NPSH
- Current Application - <2500’ ;<200BLPD
Electric Submersible Twin Screw Multiphase Pump (ESP-TSMP)
Electric Submersible Twin Screw Multiphase Pump (ESP-TSMP)

- Rotary +ve displacement type pump as PCP
- Capable of handling large gas vol.
- Sensitive to Solid (especially in low viscosity fluid)
- Opposing flights of screws creates double axes
- Screw matches: Rotation advances trapped fluid
- Trans-axial flow and forces (less shear force)
- Appropriate clearance design is essential to prevent reverse slip flow, head & efficiency loss
San Juan CBM field trial

ESPCP/ESPCP TTC

- 8 wells/12 installations since 11/05 – Le Platt #1
- **TTC- 836** days run life & still running.
- Others not as successful – Stuck rotor/inadequate HP
- First install ever- New TTC design with mechanical locks & One slickline run in 2 7/8”
- Running ESPCP TTC no ESPCP

- **ESP** – Two installs by Q2
San Juan CBM field trial

HDESP

- 4 wells/11 installation since 12/05 – Poff Forest & Sitton well - had over 200 days run life before failure
- Electrical Integrity was a biggest issue
- Quit new HDESP installs and considering HDI w/out electrical

- ESP-TSMP - BP Wytch Farm install
Conclusion

- Some of the ESP Group are becoming a viable method to dewater gas well.

- Smaller throw-away ESP’s with Franklin motors is been around but not favorable…depend on the biz model

- More work is still required for more adaptation of the tech to gas well
What we talked about?

- Introduction
- Centrifugal ESP (Conventional ESP)
- Electric Submersible Progressing Cavity Pump – ESPCP (TTC option)
- Hydraulic Diaphragm Electric Submersible Pump – HDESP
- Electric Submersible Twin Screw Multiphase Pump (ESP-TSMP)
- San Juan CBM ESP Group field trial
- Conclusion
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.