Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump

Emilio E. Paladino; João A. Lima and Rairam F. Almeida

UFRN / DEM / PPGEM, Brazil

Benno W. Assmann

PETROBRAS / UN-RNCE, Brazil
Introduction

• Since Moineau (1930), several approaches for evaluate PCP performance have been employed.

• Robello & Saveth (1998), Olivet et al. (2002), Gamboa et al. (2002) and other works from these groups, constitute main references for this research field, theoretical or experimental

• Experiments are expensive and normally provide only global values

• Simplified approaches have been proposed, but could be inaccurate or fail in complex situations
Introduction

• Simplified models
 – Quick responses to changes in operational variables or geometrical parameters
 – Only global parameters could be obtained (like)
 – Unusable for complex situations as multiphase flow (most common operation situation)
 – Need for guessed parameters

• Three dimensional computational model
 – Detailed knowledge of the flow field for geometry and operation optimization (too costly if done experimentally)
Introduction

• Three dimensional computational model (cont.)
 – Torque (and so power) can be calculated from model, including hydraulic losses
 – Correct representation of the flow field (Hagen-Poiseulle flow hypothesis can be too strong in some cases)
 – Multiphase flow can be simulated, having adequate models for interface morphology and momentum transfer
Preliminary Analysis

- General aproach in simplified models:
- Hypotheses
 - $\dot{V}_{Pumped} = \dot{V}_{Displaced} - \dot{V}_{Slip}$
 - Hagen-Pouisille flow in constant area channel for slip calculation

\[\Delta p = f \frac{\rho}{2} \frac{U^2}{D_H} \frac{L}{D_H} \Rightarrow \Delta p = f \frac{\rho L}{4b^2w^3} S^2 \]

\[f = \frac{C}{Re} \quad \text{where} \quad Re = \frac{2\rho S}{\mu b} \]

\[S = \frac{8bw^3\Delta p}{C\mu L} \]
Preliminary Analysis

• Assuming that the volumetric flow can be calculated as:

\[\dot{V}_{\text{Pumped}} = \dot{V}_{\text{Displaced}} - \dot{V}_{\text{Slip}} \]

 \begin{align*}
 \text{Depends on Geometric Parameters and RPM} & & \text{Depends on Geometry, } \Delta p \text{ and Fluid Properties} \\
 \Rightarrow \eta_{\text{Vol}} &= 1 - \frac{\dot{V}_S}{\dot{V}_D}
 \end{align*}

• Some conclusions can be obtained

 – For laminar flow the slip depends linearly on \(\Delta p \text{ and } \mu \)

 – The clearance \((w) \) appears elevated to the cube, which means it has a strong influence on the volumetric efficiency

 – The channel length \(L \) is estimated in this kind of approaches but can be related to the pump length and has also an inverse linear influence on volumetric efficiency
Computational Model

• Main challenges
 – Mesh generation
 – Mesh motion set-up

• Characteristics
 – Full 3D, transient detailed model
 – Complete Navier-Stokes equation solved within the fluid region (Allows for turbulence and multiphase modeling)
 – Element Based Finite Volume Method used for equation discretization
 – Fully coupled solver for pressure and velocity (mass and momentum equations)
Computational Model

- The mesh generation process was a great challenge because of the element aspect ratio in near clearance regions.
- Furthermore, mesh motion imposes huge element deformation along time.
- Imposing the mesh motion directly in CFD code resulted in element distortion due to numerical diffusivity on the mesh motion calculation.
Computational Model

• Mesh motion
 – Imposed into the whole mesh (at each node)
 – Meshes generated automatically for each timestep
 – FORTRAN CFX User routines needed
Results and Discussion

- Model Validation
 - Gamboa et al. (2002) experiments used to validate the model
 - Some confusion with used parameters
 - Experiments data:
 - Geometry
 - Pitch number
 - 0.187 mm
 - Fluid properties:
 - \(\mu = 1 \text{ cP} \)
 - \(\rho = 1000 \text{ kg/m}^3 \)
 - \(\mu = 42 \text{ cP} \)
 - \(\rho = 868 \text{ kg/m}^3 \)

<table>
<thead>
<tr>
<th>Stator Pitch</th>
<th>119.99 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>0.187 mm</td>
</tr>
<tr>
<td>Pitch number</td>
<td>6(?)(5) (?)</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>39.878 mm</td>
</tr>
</tbody>
</table>
Results and Discussion

- Volumetric flow vs. Pressure

Different clearances
Different number of pitches
Results and Discussion

- Volumetric flow vs. Pressure
 - Different RPM
Results and Discussion

• Volumetric flow vs. Pressure
 – Water flow (1cP)
Results and Discussion

- Volumetric flow vs. Pressure
 - Eddy viscosity turbulent model (turbulence modeling study running on)
Results and Discussion

- Pressure distribution

EnLithen Here
Results and Discussion

• Pressure distribution
Results and Discussion

- Velocity at clearance and pressure along the rotor
 - Strong transient flow in sealing regions
Conclusions

- A detailed CFD model for a rigid stator PCP, considering the rotor motion, was successfully implemented.
- Provides detailed information about the pump fluid dynamics inside the PCP,
- This allows to calculate performance and can be used for geometrical and operational optimization.
- Detailed pressure fields available allow the development of fluid-structure interaction models in order to study the elastomeric stator.
Further work

- Implementation of the Fluid-Structure Interaction into the model in order consider the elastomer stator
- Analysis of the influence of the turbulence modeling
- Multiphase flow modeling (Experimental support needed)
- Etc.