The Use of Subsea Gas-Lift in Deepwater Applications

Subash Jayawardena, George Zabaras, and Leonid Dykhno
Shell Global Solutions (US) Inc.
Contents

• Why Gas-Lift is Needed
• Gas Lift Delivery System Design
 – Dedicated GL riser vs. Shared GL riser
 – GL injection location
 – Insulation
• Operating Envelope
• Flow Assurance Concerns
• Case Studies
• Systems Suitable for Gas-lift
• Conclusions
Why Gas-Lift is Needed - Production enhancement

Effect of gas lift on flowline pressure

low water cut

- Blue line: 0% WC, no GL
- Pink line: 0% WC, 20MMSCFD GL

Manifold pressure, psi vs Liquid rate, BLPD
Why Gas-Lift is Needed - Production enhancement

Effect of gas lift on flowline pressure

- high water cut
- 75% WC, no GL
- 75% WC, 20MMSCFD GL
Why Gas-Lift is Needed - Production enhancement

Effect of gas lift on flowline pressure

- **75% WC, no GL**
- **75% WC, 20MMSCFD GL**
- **FWHP**

Liquid rate, BLPD

Manifold pressure, psi
Why Gas-Lift is Needed - Flow stabilization

OLGA results
Flow rate to host & flowline pressure

Field Data pressures w/ & w/o gas lift
Why Gas-Lift is Needed - Flowline depressurization

Trend data

- FL pressure - with gas lift assist
- FL pressure - without gas lift assist

Production
Shut in
Blowdown

HDP
W/o gas lift
With gas lift

psia

Time [h]
Gas Lift Delivery System Design

- **Shared Gas Lift Risers**
 - Uses of gas lift
 - Flowline operating conditions
 - Host limitations

- **Gas Lift Injection Location**
 - Geometry (FL, well location)
 - Uncertainty of reservoir performance
 - Blowdown

- **Insulation**
 - Cooldown time

- **Cost Considerations**
Operating Envelope

- GL Rate Needed (how much and when)
 - Production enhancement
 - Flow stabilization
 - Depressurization
- Source of lift gas
- Available pressure and temperature
 - Heating & compression
- Flowline Pressure
 - With and without gas lift
 - Dead oil filled
- Cooldown time considerations
- Consider all credible scenarios
Flow Assurance Concerns

- Hydrates in GL system
 - Prevention
 - Remediation
- Asphaltene Destabilization
- Thermal Considerations
 - Arrival Temperature
 - Cooldown time
- Slugging
- Erosion in flowline
- Available Gas - quality
- Low Temperature Concerns – J-T cooling
 - Engineering and procedural solutions
Case Studies

<table>
<thead>
<tr>
<th>case</th>
<th>status</th>
<th>WD ft</th>
<th>FL Geometry</th>
<th>water inj</th>
<th>Gas-Reinj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>producing</td>
<td>6000</td>
<td>uphill</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1b</td>
<td>producing</td>
<td>6000</td>
<td>downhill</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>producing</td>
<td>3000</td>
<td>uphill (with dip)</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>design</td>
<td>3000</td>
<td>uphill</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>design</td>
<td>3000</td>
<td>mixed</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>producing</td>
<td>3500</td>
<td>uphill</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>design</td>
<td>4500</td>
<td>downhill</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Selected Solutions

<table>
<thead>
<tr>
<th>case</th>
<th>FL Geometry</th>
<th>water inj</th>
<th>Gas-Reinj</th>
<th>location</th>
<th>shared</th>
<th>insulated</th>
<th>when</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>uphill</td>
<td>no</td>
<td>no</td>
<td>RB</td>
<td>yes *</td>
<td>?</td>
<td>when needed</td>
</tr>
<tr>
<td>1b</td>
<td>downhill</td>
<td>no</td>
<td>no</td>
<td>RB/sled</td>
<td>no</td>
<td>yes/no</td>
<td>first oil</td>
</tr>
<tr>
<td>2</td>
<td>uphill (with dip)</td>
<td>yes</td>
<td>no</td>
<td>manifold</td>
<td>yes</td>
<td>yes</td>
<td>first oil</td>
</tr>
<tr>
<td>3</td>
<td>uphill</td>
<td>yes</td>
<td>no</td>
<td>manifold</td>
<td>no</td>
<td>yes</td>
<td>first oil</td>
</tr>
<tr>
<td>4</td>
<td>mixed</td>
<td>yes</td>
<td>no</td>
<td>RB</td>
<td>no ?</td>
<td>yes</td>
<td>first oil</td>
</tr>
<tr>
<td>5</td>
<td>uphill</td>
<td>yes</td>
<td>no</td>
<td>manifold</td>
<td>?</td>
<td>yes</td>
<td>when needed</td>
</tr>
<tr>
<td>6</td>
<td>downhill</td>
<td>yes</td>
<td>yes</td>
<td>manifold</td>
<td>?</td>
<td>yes</td>
<td>when needed</td>
</tr>
</tbody>
</table>

- **Location**
 - Well & host locations, flowline size and uncertainties about production rates
- **Shared vs. dedicated**
 - Host limitations, flowline geometry
- **Insulation**
 - Arrival temperature and cooldown time, reservoir temperatures
- **Timing**
 - Uncertainty about gas-to-liquid ratio, uses of gas lift
Systems Suitable for Gas-lift

- Oil systems
- High water cut and/or low GOR → GLR < 500 scf/STB
- High water depth → 3000 to 6000+ ft
 - Watch for J-T cooling
- Downhill flowlines
- Some Uphill flowlines
- Low to moderate viscosities
Conclusions

• There is no *one size fits all* design of gas lift system.
• Need for integrated subsurface – flowline modeling over the field life
 – Accurate modeling of multiphase flow in large diameter, deepwater
 risers
 – Understand the uncertainties about the reservoir performance
• Defining the operating envelope of gas lift system – include all credible
 scenarios.
• Shared gas lift risers are possible, but not always.