A Novel Foamer for Deliquification of Condensate-Loaded Gas Wells

D. Orta, S. Debord, J. Yang, T. Salma

Baker Petrolite
Outline

• Challenges of conventional foamers
• Problem solving approach
• Screening tests
 – Product comparison
 – Well condensate comparison
 – Water cut effect
• Trial
 – Test well information
 – Gas production results
 – Condensate production results
 – Economic gains
• Summary
Challenges for Conventional Foamers

Challenges

- High condensate cut acts as foam suppressant
- Temperature limitations
- Higher concentration can have adverse impact on downstream processes
Problem Solving Approach

- Laboratory screening of products in synthetic fluids
- Candidate well selection
 - Production profile evaluation
 - Flow modeling
 - On-site screening with field fluids to evaluate wells
- Initiation of trial
- Monitoring of production data
- Performance evaluation
- Optimization
Foam Screening Apparatus

Diagram showing a setup with a water circulator, gas supply, flow meter, test column, and balance. The diagram indicates a process for foam screening apparatus.
Condensate Foamer Exhibited a Broader Effectiveness Range in Various Condensates

80% Condensate - 1% Various Foamers

- Condensate foamer
- Amphoteric foamer
- Anionic foamer

<table>
<thead>
<tr>
<th>Well</th>
<th>% Unloaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well A</td>
<td></td>
</tr>
<tr>
<td>Well B</td>
<td></td>
</tr>
<tr>
<td>Well C</td>
<td></td>
</tr>
<tr>
<td>Well D</td>
<td></td>
</tr>
<tr>
<td>Well E</td>
<td></td>
</tr>
<tr>
<td>Well F</td>
<td></td>
</tr>
</tbody>
</table>
Increased Foaming Performance with Condensate Cut

Condensate Cut Effect - 1% Condensate Foamer

Wt % Unloaded

% Condensate

Well A
Well C
Well D
Well F
Condensate Foamer trial with Multiphase Separator
Well was Loaded with 66 Percent Condensate

- Trial performed at a well in Texas
- Well depth was 14,700 ft with 3-½ in tubing
- Slim-hole completion (no casing)
- Applied via cap string through production tubing
- Applied in conjunction with intermitter to assist in unloading fluids
- Monitored gas, water, and condensate production
$1,894 per Day Net Increase in Gas Revenue

Texas Trial - Gas Production Increase

- Loaded: 338 Mscf/d
- W/ Intermitter: 589 Mscf/d
- W/ Intermitter + Condensate Foamer: 939 Mscf/d
$782 Additional Revenue from Condensate

Texas Trial - Liquid Production

Fluid Production (bbls)

- 12-Day Production with Intermitter (Baseline)
 - Condensate: 222.0
 - Water: 78.0

- 12-Day Production with Condensate Foamer
 - Condensate: 296.3
 - Water: 28.2

Legend:
- Condensate
- Water
Economic Impact

- Gas price: $5.41/mBTU (at time of trial)
- Crude price: $68/bbl (at time of trial)
Trial Summary

- Effectively foamed well with >65 percent condensate cut
- Extended intermittent production from a 1 day “on” to 11 day “on” cycle
- No foaming or emulsion problems observed on surface equipment
- Improved gas production by 59 percent
- Improved condensate production by 16 percent
Acknowledgements

- S. Ramachandran, M. Fosdick, N. Hines
- J. Blanchard, J. Long, E. Cantu, J. Garza
Comments & Questions?
Disclaimer

The Gas Well Deliquification Steering Committee Members, the Supporting Organizations and their companies, the author(s) of this Technical Presentation or Continuing Education Course, and their company(ies), provide this presentation and/or training at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.