366 Inch Stroke Rotaflex Pumping Unit

Susan R. Beck
Weatherford
Rotaflex 1150 and 1151

- Stroke length of 366” (30.5 ft)
- PPRL rating of 50,000 Lbs
- Gearbox 320,000 in-lb on 1150
- Gearbox 420,000 in-lb on 1151
Production Chart

ROTAFLEX MODEL 1150 PRODUCTION

- **PRODUCTION - BPD**
 - VFD Enhanced
 - No VFD

DEPTH - ft.

PRODUCTION - BPD

- 0
- 1000
- 2000
- 3000
- 4000
- 5000
- 6000
- 7000
- 8000
- 9000
- 10000
- 11000

DEPTCh - ft.

2500 3500 4500 5500 6500 7500 8500 9500 10500 11500
Mechanical Reversal

The chain travels around a lower sprocket that is fixed to the gearbox and around an upper idler sprocket that is mounted at the mid-tower.

The ROTAFLEX unit’s reversing mechanism is completely mechanical and overcomes past failures in competing long, slow stroke pumping systems.
Counterbalance to Rod Loads

- Chain Travels Around a Lower Sprocket that is Fixed To The Gearbox Shaft
- Weight box is attached to one of the links of the chain using a sliding linkage mechanism
- Weight box moves with the chain link
- Weight box top is attached to load belt
Mechanical Features

- Direct Counterweight Connection to Well Load
- Shock Absorbing Load Belt
Features of the Rotaflex® Long Stroke Pumping Unit

- Short torque arm results in smaller gear reducers
- Improved system efficiency with smaller gear reducer

18 inches
System Efficiency Comparison

- Highly efficient pumping system
Cimarex Energy Well Conditions

- 7 wells near Dayton, TX
- Casing 5-1/2” 17# J-55 or 20# P-110
- Tubing 2-7/8” 6.5# L-80
- Perforations: 9440’ – 9500’ MD/ 9192’ -9246’ TVD
- Pump setting: 5812’ to 6843’ MD
- Equipment sized for 450 BFPD
Down hole pump installed

- Weatherford 2-1/2” x 2” x 38’ HXBC BHD (per KDR Supply – Liberty)
- 3’ plunger ~ .004 clearance PA with 60 rings
- Single Traveling Valve
- Single Standing valve
- Extra heavy balls
- Headspace ~2-3”
- Standard seating cups
- 20’ standard gas anchor
Equipment installed continued

- Norris 97 Rod String, 86 taper with 400 ft of 1.5 sinker bars
- Last 150 rods have molded rod guides, 8 per rod
- 40’ x 1.5” polished rod
- 100 HP NEMA D motor and control panel
- 1150 Rotaflex surface unit
- Sheaved for around 3 spm
Predictives

** PUMPING UNIT **
- Mfgr and Type: 320-500-366
- Actual Max Load (lbs): 36399
- Actual Min Load (lbs): 13209
- Average Pumping Speed (spm): 2.9
- Max Load (% of Rating): 72.8
- Polished Rod Power (hp): 40.8
- Unit and Drive Train Loss (hp): 4.5
- Computed Surface Stroke (in): 366.1

** SUMMARY OF REDUCER LOADING **

<table>
<thead>
<tr>
<th></th>
<th>EXISTING</th>
<th>IN BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Torque (m in-lbs)</td>
<td>176.7</td>
<td>175.5</td>
</tr>
<tr>
<td>Min Torque (m in-lbs)</td>
<td>-19.4</td>
<td>-18.2</td>
</tr>
<tr>
<td>Counterbalance Moment (lbs)</td>
<td>24683</td>
<td>24613</td>
</tr>
<tr>
<td>Percent of Reducer Rating</td>
<td>55.2</td>
<td>54.9</td>
</tr>
</tbody>
</table>

** ROD LOADING **

<table>
<thead>
<tr>
<th>Diameter (in)</th>
<th>Length (ft)</th>
<th>Modulus (MM psi)</th>
<th>Fr Coeff</th>
<th>Guides</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 *)</td>
<td>2568</td>
<td>30.5</td>
<td>0.2</td>
<td>N (0)</td>
<td>87</td>
</tr>
<tr>
<td>2) 0.875</td>
<td>2771</td>
<td>30.5</td>
<td>0.2</td>
<td>N (0)</td>
<td>88</td>
</tr>
<tr>
<td>3) 0.75</td>
<td>3261</td>
<td>30.5</td>
<td>0.2</td>
<td>N (0)</td>
<td>88</td>
</tr>
<tr>
<td>4) 1.5</td>
<td>200</td>
<td>30.5</td>
<td>0.2</td>
<td>N (0)</td>
<td>32</td>
</tr>
</tbody>
</table>

* Requires slimhole couplings
Predictive Dyno Surface and Pump Cards

![Graph showing Dyno Surface and Pump Cards and Permissible Loads]

- Load (lbs) on the Y-axis
- Position (in) on the X-axis

The graph illustrates the load variation with position for different cases.
Axial Load vs. Measured Depth
Side Load

![Graph showing Side Load vs Measured Depth](image)

- **Side Load (lbs/rod)** vs **Measured Depth (ft)**
- The graph displays the fluctuation of side load with depth.
Deviation Survey
Installation

- March, 2007 installed five 1150’s
- September, 2007 one 1150 scheduled to be installed
- October, 2007 one 1150 scheduled to be installed
Actual Measured Results

• At the end of March through the first of April, actual well data was collected. Fluid levels were shot, dynamometer were run and based on those results, changes were suggested.
Well #5

Dynamometer Analysis

Stroke 1 - 21:01:32

Surface Loads Card

Pump Loads Card

Stroke 1 Pump Card
The pump card indicates no pump load and no pump action. The pumping unit is running, however it is doing no useful work.
Well #6

Dynamometer Analysis

Stroke 1 - 15:47:44

Surface Loads Card

Pump Loads Card

Stroke 1 Pump Card
The pump cards indicated incomplete pump fillage due to the lack of fluid and fluid pound.
Present conditions

• Well # 3 and # 5 are currently flowing and the Rotaflex is not operational. Wells are flowing 390 plus barrels per day.

• Well # 6 is operating intermittingly to avoid fluid pound and 2” pump was replaced by 1.75 pump plus pump has been lowered.
Conclusion

The Rotaflex is a long stroke pumping system that is relatively efficient and offers high lift capacities. The long slow stroke makes it a good choice for deviated wells. However, when pumping deep, deviated and gaseous wells it is sometimes necessary to experiment with various down hole configurations to optimize production.
Special thanks

- Cimarex Energy Personnel
- Lynn Rowland-Echometer
- Robert Harris of H&H Well Service
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.