Intermittent Production from Liquid Loaded Gas Wells

by

P. Verbeek (Shell, Rijswijk), H. Frydenlund (NTNU, Trondheim), T. Clemens (RAG, Vienna), R. Eylander (NAM, Assen)
Intermittent Production from Liquid Loaded Gas Wells

Topics

1. The hydraulic model
2. Field test versus model prediction
3. Intermittent production
4. Downhole deliquification & injection
Typical production response in liquid loaded gas well

Intermittent production

- Recharge (reservoir)
- Drainage (well)
Liquid loading – problem definition

Water collects down hole and drains off

Water

Gas

P_{wf} \quad \text{DD} \quad P_{res}

Depth

OB
Well configuration with separate production and drainage intervals

Hydraulic model

- **upper zone**: gravity gas/water separation
- **lower zone**: water drainage under gravity
Hydraulic Model (cont.)

Producing (upper) & injection (lower) zones
- vertically separated to build up hydrostatic head
- lower injection zone pressure-depleted
- favourable permeability

Applications
- **Layered reservoir**: High pressure in upper zone and low pressure in lower zone can be used to perform downhole gas/water separation & injection driven purely by gravity
- **Thick reservoir**: liquid column builds sufficient head over pay zone for liquid drainage in lower part
Producing zone - liquid fall-out

Velocity profile:
liquid fall-out in lower part due to low upward velocity

In deviated well:
Turner critical velocity for liquid loading depends on tube inclination (Shell experiments)

Spring 2004 Gas Well De-Liquification Workshop, Denver
Back-up slide:

Turner criterion for liquid loading

There are many factors affecting the onset of liquid loading, e.g. large liner diameter and tubing inclination (Rijswijk experiments):

\[
v_t = 1.59 \frac{\sigma^{1/4} (\rho_L - \rho_g)^{1/4}}{\rho_g^{1/2}}
\]
Injection zone - Liquid build-up

Gas inflow rate:
hindered by liquid column providing back pressure

Water drainage:
Hydrostatic head and pressure depletion governs rate
Figure demonstrates that increased permeability thickness (product k*H) increases water drainage rate back into reservoir and decreases equilibrium liquid column height.
Back-up slide:

Gas rate hindered by liquid column providing back pressure in layered reservoir

\[
q_g = \frac{2\pi k (h_{f1} - h_{Liq block})(p_{Re s1} - p_{WH})}{\mu_g \left(\ln \frac{r_e}{r_w} + S \right)} + \frac{2\pi k (h_{Liq block})(p_{Re s1} - p_{WH} - \rho_w gh_{Liq block})}{\mu_g \left(\ln \frac{r_e}{r_w} + S \right)}
\]

- Injection rate modeled with Darcy:

\[
q_{inj} = \frac{2\pi k h\Delta p}{\mu \left(\ln \frac{r_e}{r_w} + S \right)}
\]

- Hydrostatic head

\[
\Delta P = \rho_L gh_{Liq} + P_{WH} - P_{Re sD}
\]
Test downhole separation/injection in Austrian field producing and injection zones connect by open sliding side door

Gas production ~50,000 m³/d

BHP ~55bar

- Gas production
- SSD open
- Compression on
- Compression out
- SSD closed

Downhole pressure in bar

Gas rate in m³/d

- lower gauge, 2076 m depth
- upper gauge, 1766 m depth

WHP

Spring 2004 Gas Well De-Liquification Workshop, Denver
Downhole gas/water separation & injection
Response simulated by hydraulic model @ test conditions

- BHP ~65 bar
- Injection rate ~100 m³/d
- Gas prod. ~50,000 m³/d

PBH [bar]
Time [h]
Production rate m³/d
Drainage rate, m³/d
Gas production, 1000x m³/d

Spring 2004 Gas Well De-Liquification Workshop, Denver
Intermittent production with downhole separation & gravity drainage controlled by automatic shut-in/start-up valve

Response simulated by hydraulic model
Back-up slide:

Definitions for next slide

Normalised Gas rate

Actual gas rate / Minimum gas rate at onset of liquid loading

Normalised liquid rate

Actual liquid rate / Liquid Drainage rate at equilibrium hydrostatic liquid column
Solutions for liquid unloading classified on basis of critical rates for gas production and liquid drainage

- **Cyclone Sep. + Gravity Inj.**
 - Normalized Gas Rate: Q_{gas}/Q_{Turner}
 - Normalized Liquid Rate: Q_{prod}/Q_{inj}

- **Gravity Sep. + Gravity Inj.**

- **Cyclone Sep. + Intermittent prod. or Injection pump**
 - Upper pressure
 - 1-1/2" gas lift tool with 1.125" ID pump
 - Anger separator and
 - Lower pressure
 - Lower Repair of Packer and Reducer with gravel packing
 - Cyclonic gas/liquid separation

Spring 2004 Gas Well De-Liquification Workshop, Denver
Liquid loading & unloading - discussion

Flow Characteristics
- dynamic multi-phase flows in long, thin deviated tubing
- dynamic interaction between far-field, near-wellbore reservoir & well
- backflow of condensate / water and back into reservoir

Dynamic Modelling
- time-scale of drainage process
- pressure-recharge and liquid drop-out around well
- transient state and PVT properties

Fit-for-purpose solution presented here
- Controlled intermittent operation to stabilise production
Concluding remarks

• A hydraulic model for depleting gas fields may predict capacity and characteristic time for intermittent production beyond onset of liquid loading.

• Predictions compare favourably to rates observed from test of downhole gas/water separation and injection (producing and injection intervals have significant vertical distance to build up hydrostatic head for liquid to drain into pressure-depleted lower zone).

• A liquid loaded well may be produced intermittently in controlled manner using automated shut-in valve; during shut-in time liquid is allowed to drain away.

• The application may be extended above critical gas rate by installation of cyclonic separation device, and above critical drainage rate by installation of downhole injection pump.

• Expected benefits from model are better predictability and control of gas capacity at tail-end production, and extended life of liquid loaded wells.