Wear Resistant, Friction Reducing Coatings Reduce Tubing Wear in Problematic Sucker Rod Couplings Wells: Laboratory Testing and Field Trials

Jackson, MS¹; Howell, DA¹; Romer, M¹; Bailey, JR²; Rajagopalan, S³; Ozekcin, A³; Inglish, G⁴; Allen, C⁴

1. ExxonMobil Upstream Research Company; 2. ExxonMobil Development Company; 3. ExxonMobil Corporate Strategic Research; 4. XTO Energy Inc.
The Problem

- Tubing wear from couplings can cause tubing leaks
- Fixing tubing leaks is expensive
- High failure frequency wells encounter economic challenges due to costs
Background – Coatings

- **Coating** – Diamond Like Carbon (DLC)

- **Benefits**
 - Low Friction
 - High Wear Resistance
 - Ease of application on cylindrical bodies
 - Tailored chemistry and architecture
Methods
• Test length – 450k cycles
• Stroke Length – 1 ft
• Side load applied – 74 lbs
• Spray metal coupling run in parallel as control
• Water circulated to clear debris

Measurements
• Coupling wear – measured as a change in diameter of couplings
• Tubing wear – measured as a change in tubing thickness in reference to a non-contacting region
Laboratory Testing – Coupling Wear

<table>
<thead>
<tr>
<th>Location</th>
<th>Test 1 (in)</th>
<th>Test 2 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coating A</td>
<td>Spray-Metal</td>
</tr>
<tr>
<td>Top</td>
<td>0.0023</td>
<td>0.0028</td>
</tr>
<tr>
<td>Middle</td>
<td>0.0019</td>
<td>0.0005</td>
</tr>
<tr>
<td>Bottom</td>
<td>0.0020</td>
<td>0.0004</td>
</tr>
</tbody>
</table>
Laboratory Testing – Tubing Wear

Coating A – 50% reduction in wall loss

Coating B – Negligible tubing wall loss

<table>
<thead>
<tr>
<th>Tubing Measurements</th>
<th>Test 1 (in)</th>
<th>Test 2 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating A</td>
<td>0.022</td>
<td>0.005</td>
</tr>
<tr>
<td>Spray-Metal</td>
<td>0.045</td>
<td>0.033</td>
</tr>
<tr>
<td>Coating B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray-Metal</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Wall loss comparison with control (%)

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating A</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>Spray-Metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating B</td>
<td></td>
<td>15%</td>
</tr>
<tr>
<td>Spray-Metal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sept. 11 - 13, 2018
2018 Sucker Rod Pumping Workshop
Oklahoma City, OK
Field Trial

Wells
- > 2 tubing failures/year
- Couplings installed during tubing workover
- Rod pump depth between 6-10k ft MD

Field Trial Scope
- Install couplings in high wear locations in the rod string
- Monitor wells to observe changes in time between tubing failures

<table>
<thead>
<tr>
<th>Couplings Installed</th>
<th>Coating A</th>
<th>Coating B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>Well 2</td>
<td>Well 3</td>
</tr>
<tr>
<td>Number</td>
<td>100</td>
<td>39</td>
</tr>
<tr>
<td>Size</td>
<td>7/8"</td>
<td>7/8"</td>
</tr>
</tbody>
</table>
Field Trial – Coupling Wear

Well 2 suffered a rod part at 10 months, which allowed for inspection of couplings in the well when the rod string was pulled.

Coating A – Minimal wear seen after 10 months

Spray metal – Striations and removal of SM coating seen at 10 months
Field Trial – Reduction in Workovers

<table>
<thead>
<tr>
<th></th>
<th>Coating A</th>
<th>Coating B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base time between tubing failures (months)</td>
<td>Well 1: 4, Well 2: 6, Well 3: 6</td>
<td></td>
</tr>
<tr>
<td>Running time without failure with coating (months)</td>
<td>Well 1: 16, Well 2: 24, Well 3: 19</td>
<td></td>
</tr>
<tr>
<td>Factor of increase of time between workovers</td>
<td>Well 1: 4X, Well 2: 4X, Well 3: 3.2X</td>
<td></td>
</tr>
</tbody>
</table>

- No change in sucker rod pump operation during the field trial
- All wells saw a substantial increase in time between tubing failure
- During routine wellwork coupling wear could be identified by appearance change in the couplings
- Well 1 and 2 transitioned from rod pumping and never saw tubing failures
- Well 3 had significant sand present and still saw significant improvements
Field Trial – Tubing Wear

Pre-Field Trial Scan

End of Field Trial Scan

Defect Severity
- Severe (>50%)
- Significant (<50%, >25%)
- Moderate (<25%, >15%)
- Minimal (<15%)

Failure Point

Uncoated Couplings

7/8” Coated Couplings
Field Trial – Coupling Wear, Sand

- Coupling wear pattern in sand-free environment is similar to the laboratory testing.
- Coupling coating wear is more significant in sandy wells and doesn’t mimic lab findings.
- Even with sand present, Coating B offered a tubing wear benefit.
Laboratory testing demonstrated a reduction in tubing and coupling wear through use of DLC, friction reducing coatings.

Reduction in tubing wear translated to drastic increases in tubing life between workovers in all three wells evaluated as a part of the field trial.

For sucker rod wells with high frequency, high cost tubing failures, targeted use of coated couplings can be an effective technology to reduce OPEX.
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.